An additive basis for the cohomology of real Grassmannians

Homotopy Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1474)


Cohomology Class Lexicographic Order Cohomology Ring Cell Decomposition Additive Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Borel: La cohomologie mod 2 de certains espaces homogènes, Comm. Math. Helv. 27 (1953), 165–197.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    I. Berstein: On the Lusternik-Schnirelmann category of Grassmannians, Math. Proc. Camb. Phil.Soc. 79 (1976), 129–134.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S. Chern: On the multiplication in the characteristic ring of a sphere bundle, Ann. of Math. 49 (1948), 362–372.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    C. Ehresmann: Sur la topologie de certains espaces homogènes, Ann. of Math. 35 (1934), 396–443.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    H.L. Hiller: On the cohomology of real Grassmannians, Trans. Amer. Math. Soc. 257 (1980), 521–533.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    J.W. Milnor, J.D. Stasheff: Characteristic Classes, Ann. of Math. Studies, Princeton, 1974.CrossRefzbMATHGoogle Scholar
  7. [7]
    V. Oproiu, Some non-embedding theorems for the Grassmann manifolds G2,n and G3,n, Proc.Edinburgh Math. Soc. 20 (1976–77), 177–185.MathSciNetCrossRefGoogle Scholar
  8. [8]
    H. Schubert: Kalkül der abzählenden Geometrie, Teubner, Leipzig, 1879.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  1. 1.Department of MathematicsIndiana UniversityBloomington

Personalised recommendations