Lefschetz numbers of C*-complexes

Geometry Of Manifolds
Part of the Lecture Notes in Mathematics book series (LNM, volume 1474)


Elliptic Operator Pseudodifferential Operator Topological Index Chern Character Index Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Atiyah, M. F. and Segal, G. B. The index of elliptic operators. II. Ann. of Math. (2) 87 (1968), 531–545.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Friedrich, T. Vorlesungen über K-Theorie. Leipzig: Teubner, 1987.zbMATHGoogle Scholar
  3. [3]
    Karoubi, M. Homologie cyclique des groupes et des algébres. C. R. Ac. Sci. Paris, Série 1, 297 (1983), 381–384.MathSciNetzbMATHGoogle Scholar
  4. [4]
    Karoubi, M. Homologie cyclique et K-théorie algébrique. I. C. R. Ac. Sci. Paris, Série 1, 297 (1983), 447–450.MathSciNetzbMATHGoogle Scholar
  5. [5]
    Kasparov, G. G. Hilbert C*-modules: theorems of Stinespring and Voiculescu. J. Operator Theory 4 (1980), 133–150.MathSciNetzbMATHGoogle Scholar
  6. [6]
    Mischenko, A. S. Representations of compact groups in Hilbert modules over C*-algebras. Trudy Mat. Inst. Steklov. 166 (1984), 161–176 (in Russian). English transl. in Proc. Steklov Inst. Math., 1986, No.1 (166).MathSciNetGoogle Scholar
  7. [7]
    Mischenko, A. S. and Fomenko, A. T. The index of elliptic operators over C*-algebras. Izv. Akad. Nauk SSR. Ser. Mat., 43 (1979), 831–859 (in Russian). English transl. in Math. USSR Izv., 15 (1980).MathSciNetzbMATHGoogle Scholar
  8. [8]
    Mischenko, A. S. and Pidstrigach, V. Ya. On non-commutative local index formula. in Baku International Topological Conference. Abstracts (Part II). Baku 1987, 244. (in Russian).Google Scholar
  9. [9]
    Troitsky, E. V. The index of equivariant elliptic operators over C*-algebras. Ann. Global Anal. Geom., 5, No.1 (1987), 3–22.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Troitsky, E. V. An exact K-cohomological C*-index formula. I. The Thom isomorphism and the topological index. Vestnik Mosk. Univ. Ser. 1. Mat. Meh., No.2 (1988), 83–85 (in Russian). English transl. in Moscow Univ. Math. Bull., to appear.Google Scholar
  11. [11]
    Troitsky, E. V. An exact K-cohomological C*-index formula. II. The index theorem and its applications. Usp. Mat. Nauk, 44 (1989), No. 1, 213–214 (in Russian).Google Scholar
  12. [12]
    Troitsky, E. V. The contractibility of the full general linear group of the C*-Hilbert module l 2 (A). Funkz. Anal. i Priloz., 20 (1986), No.4, 58–64 (in Russian). English transl. in Funct. Anal. Appl., to appear.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  1. 1.Dept. of Mech. and Math.Moscov State UniversityMoscovUSSR

Personalised recommendations