Skip to main content

Equivariant splittings associated with smooth toral actions

Geometry Of Manifolds

Part of the Lecture Notes in Mathematics book series (LNM,volume 1474)

Keywords

  • Homotopy Class
  • Discrete Subgroup
  • Closed Manifold
  • Parallel Field
  • Nonpositive Curvature

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0084746
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-47403-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. H. Bing, The cartesian product of a certain nonmanifold and a line is E 4. Ann. of Math. 70(1959), 399–412.

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. G. B. Bredon, Introduction to compact transformation groups. Academic Press, Now York-London 1972.

    MATH  Google Scholar 

  3. P. Buser, H. Karcher, Gromov's almost flat manifolds. Asterisque No. 81, Soc. Math. France 1981.

    Google Scholar 

  4. J. Cerf, 1-formes fermées non singulieres sur les variétés compactes de dimension 3. Séminaire Bourbaki No. 574.

    Google Scholar 

  5. P. E. Conner, F. Raymond, Actions of compact Lie groups on aspherical manifolds. Topology of Manifolds, Markham, Chicago, 1970, 227–264.

    Google Scholar 

  6. P. E. Conner, F. Raymond, Injective operations of the toral groups. Topology 10(1971), 283–296.

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. P. E. Conner, F. Raymond, Holomorphic Seifert fiberings. Proc. Second Conference on Compact Transformation Groups, Part 2, Springer Lecture Notes in Math. 299(1972), 124–204.

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. P. E. Conner, F. Raymond, Realising finite groups of homeomorphisms from homotopy classes of self-homotopy equivalences. Manifolds, Tokyo 1973, University of Tokyo Press, Tokyo 1975, 231–238.

    Google Scholar 

  9. F. T. Farrell, The obstruction to fibering a manifold over a circle. Indiana Univ. Math. Journal 21(1971), 315–346.

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. J. Hempel, 3-Manifolds. Priceton University Press 1976.

    Google Scholar 

  11. Y. Kamishima, K. B. Lee, F. Raymond, The Seifert construction and its applications to infranilmanifolds. Quart. J. Math. Oxford 34(1983), 433–452.

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. C. Kinsey, Pseudoisotopies and submersions of a compact manifold to the circle. Topology 26(1988), 433–452.

    MathSciNet  Google Scholar 

  13. H. B. Lawson, S. T. Yau, Compact manifolds of nonpositive curvature. J. Differential Geometry, 7(1972), 211–228.

    MathSciNet  MATH  Google Scholar 

  14. K. B. Lee, F. Raymond, Geometric realisation of group extensions by the Seifert construction. Contemporary Math. AMS, Vol. 33(1984), 353–411.

    MathSciNet  CrossRef  Google Scholar 

  15. A. I. Malcev, On a class of homogeneous spaces. AMS Transl. 39(1951), 1–33.

    MathSciNet  MATH  Google Scholar 

  16. J. J. Rotman, The theory of groups. An introduction, second edition, Allyn and Bacon, Inc, Boston 1973.

    MATH  Google Scholar 

  17. T. B. Rushing, Topological Embeddings. Academic Press, New York-London, 1973.

    MATH  Google Scholar 

  18. M. Sadowski, Freeness and effectiveness of some toral actions, to appear.

    Google Scholar 

  19. R. Schultz, Group actions on hypertoral manifolds 1, Topology Symp. Siegen 1979, Springer Lecture Notes in Math. 788(1980), 364–377.

    MathSciNet  CrossRef  MATH  Google Scholar 

  20. E. H. Spanier, Algebraic topology. Mc Graw Hill, Berkeley 1967.

    MATH  Google Scholar 

  21. D. Tischler, On fibering certain foliated manifolds over S 1. Topology 9(1970), 153–154.

    MathSciNet  CrossRef  MATH  Google Scholar 

  22. A. W. Wadsley, Geodesic foliations by circles. J. Differential Geometry, 10(1975), 541–549.

    MathSciNet  MATH  Google Scholar 

  23. R. B. Warfield, Nilpotent groups. Springer Lecture Notes in Math. 513, 1976.

    Google Scholar 

  24. D. J. Welsh, Manifolds that admit parallel vector fields. Illinois Journ. of Math. 30(1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Sadowski, M. (1991). Equivariant splittings associated with smooth toral actions. In: Jackowski, S., Oliver, B., Pawałowski, K. (eds) Algebraic Topology Poznań 1989. Lecture Notes in Mathematics, vol 1474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084746

Download citation

  • DOI: https://doi.org/10.1007/BFb0084746

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54098-4

  • Online ISBN: 978-3-540-47403-6

  • eBook Packages: Springer Book Archive