Skip to main content

Examples of lack of rigidity in crystallographic groups

Geometry Of Manifolds

Part of the Lecture Notes in Mathematics book series (LNM,volume 1474)

Keywords

  • Spectral Sequence
  • Holonomy Group
  • Crystallographic Group
  • Grothendieck Ring
  • Whitehead Group

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0084742
  • Chapter length: 7 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-47403-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bass, H.:Algebraic K-Theory. New York: W.A.Benjamin Inc., 1968

    MATH  Google Scholar 

  2. Bass, H., Murthy, P.: Grothendieck groups and Picard groups of Abelian group rings. Annals of Math.(2)86,16–73 (1967)

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Carter, D.: Lower K-theory of finite groups. Comm. Algebra 8 1927–1937 (1980)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Connolly, F., daSilva, M.:N i K 0(Zπ) is a finitely generated ZN i module for any finite group π. (to appear)

    Google Scholar 

  5. Connolly, F., Koźniewski, T.: Finiteness properties of classifying spaces of proper Γ actions. Journal of Pure and Applied Algebra 41, 17–36 (1986)

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. Connolly, F., Koźniewski, T.:Rigidity and Crystallographic Groups, I. Inventiones Math.99 25–49 (1990)

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. Connolly, F., Koźniewski, T.:Rigidity and Crystallographic Groups, II. (in preparation)

    Google Scholar 

  8. Connolly, F., Lück, W.: The involution on the Equivariant Whitehead Group. Journal of K-Theory,(to appear, 1990)

    Google Scholar 

  9. Farrell, F.T.:The obstruction to fibering a manifold over a circle. Indiana Univ. Math. J. 21,3125–346 (1971)

    MathSciNet  CrossRef  MATH  Google Scholar 

  10. Farrell, F.T., Hsiang, W.C.: A formula for K 1(R α[T]). Proc. Symp. Pure Math. vol. 17 (1970)

    Google Scholar 

  11. Farrell, F.T., Hsiang, W.C.: Topological Characterization of flat and almost flat manifolds, M n, n ≠ 3, 4. Amer. Jour. Math.105,641–672 (1983)

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. Hsiang, W.C., Shaneson, J.: Fake Tori. In: Topology of Manifolds. Chicago, Markham 1970 pp. 18–51

    Google Scholar 

  13. Milnor, J.W.: Whitehead Torsion. Bulletin of the Amer. Math. Soc. 72, 358–426 (1966)

    MathSciNet  CrossRef  MATH  Google Scholar 

  14. Quinn, F.: Ends of maps II. Inventiones Math.68,353–424 (1982)

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. Quinn, F.: Algebraic K-theory of poly-(finite or cyclic) groups, Bulletin of the Amer. Math. Soc. 12, 221–226 (1985).

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Steinberger, M.: The equivariant topological s-cobordism theorem. Inventiones Math. 91, 61–104 (1988)

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. Steinberger, M., West, J.:Equivariant h-cobordisms and finiteness obstructions. Bulletin of the Amer. Math. Soc. 12, 217–220 (1985)

    MathSciNet  CrossRef  MATH  Google Scholar 

  18. Swan, R.: The Grothendieck ring of a finite group. Topology 2, 85–110 (1963)

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. Tsapogas, G.: On the K-theory of crystallographic groups, Ph.D. dissertation, University of Notre Dame, 1990.

    Google Scholar 

  20. Weinberger, S.: Private communication

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Connolly, F., Koźniewski, T. (1991). Examples of lack of rigidity in crystallographic groups. In: Jackowski, S., Oliver, B., Pawałowski, K. (eds) Algebraic Topology Poznań 1989. Lecture Notes in Mathematics, vol 1474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084742

Download citation

  • DOI: https://doi.org/10.1007/BFb0084742

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54098-4

  • Online ISBN: 978-3-540-47403-6

  • eBook Packages: Springer Book Archive