Skip to main content

Computations of stable pseudoisotopy spaces for aspherical manifolds

Survey Articles

Part of the Lecture Notes in Mathematics book series (LNM,volume 1474)

Keywords

  • Riemannian Manifold
  • Sectional Curvature
  • Spectral Sequence
  • Homotopy Type
  • Homotopy Group

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/BFb0084737
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-47403-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.95
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. I. Al'ber, Spaces of mappings into a manifold with negative curvature, Dokl. Akad. Naud, SSSR, Tom 178 (1968), No. 1.

    Google Scholar 

  2. D. R. Anderson and W.-c. Hsiang, The functors K−i and pseudoisotopies of polyhedra, Ann. of Math. 105 (1977), 201–223.

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. W. Ballman, M. Gromov, and V. Schroeder, Manifolds of nonpositive curvature, Birkhauser (1985).

    Google Scholar 

  4. J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160.

    MathSciNet  CrossRef  MATH  Google Scholar 

  5. F. T. Farrell and W.-c. Hsiang, The Whitehead groups of poly-(finite or cyclic) groups, J. London Math. Soc. 24 (1981), 308–324.

    MathSciNet  CrossRef  MATH  Google Scholar 

  6. F. T. Farrell and L. E. Jones, K-theory and dynamics, II, Ann. of Math. 126 (1987), 451–493.

    MathSciNet  CrossRef  MATH  Google Scholar 

  7. F. T. Farrell and L. E. Jones, Algebraic K-theory of spaces stratified fibered over hyperbolic orbifolds, Proc. Nat. Acad. Sci. U. S. A. 83 (1986), 5364–5366.

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. F. T. Farrell and L. E. Jones, A topological analogue of Mostow's rigidity theorem, J. Amer. Math. Soc. 2 (1989), 257–370.

    MathSciNet  MATH  Google Scholar 

  9. F. T. Farrell and L. E. Jones, Rigidity and other topological aspects of compact non-positively curved manifolds, Bull. Amer. Math. Soc., in press.

    Google Scholar 

  10. P. Hartman, On homotopic harmonic maps, Canadian J. Math. 19 (1967), 673–687.

    MathSciNet  CrossRef  MATH  Google Scholar 

  11. A. E. Hatcher, Concordance spaces, higher simple homotopy theory, and applications, Proc. Symp. Pure Math. 32 (1978), 3–21.

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. A. E. Hatcher and J. B. Wagoner, Pseudoisotopies of compact manifolds, Asterisque 6 (1973).

    Google Scholar 

  13. I. M. James, Ex-homotopy theory, Illinois J. Math. 15 (1971), 324–337.

    MathSciNet  MATH  Google Scholar 

  14. A. J. Nicas, On the higher Whitehead groups of a Bieberbach group, Trans. Amer. Math. Soc. 287 (1985), 853–859.

    MathSciNet  CrossRef  MATH  Google Scholar 

  15. F. Quinn, Ends of maps, II, Invent. Math. 68 (1982), 353–424.

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. F. Quinn, Algebraic K-theory of poly-(finite or cyclic) groups, Bull. Amer. Math. Soc. 12 (1985), 221–226.

    MathSciNet  CrossRef  MATH  Google Scholar 

  17. I. A. Volodin, Generalized Whitehead groups and pseudoisotopies, Uspehi Mat. Nauk. 27 (1972), 229–230.

    MathSciNet  Google Scholar 

  18. F. Waldhausen, Algebraic K-theory of generalized free products, Ann. of Math. 108 (1978), 135–256.

    MathSciNet  CrossRef  MATH  Google Scholar 

  19. F. Waldhausen, Algebraic K-theory of topological spaces, I. Proc. Symp. Pure Math. 32 (1978), 35–60.

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1991 Springer-Verlag

About this paper

Cite this paper

Farrell, F.T., Jones, L.E. (1991). Computations of stable pseudoisotopy spaces for aspherical manifolds. In: Jackowski, S., Oliver, B., Pawałowski, K. (eds) Algebraic Topology Poznań 1989. Lecture Notes in Mathematics, vol 1474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084737

Download citation

  • DOI: https://doi.org/10.1007/BFb0084737

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54098-4

  • Online ISBN: 978-3-540-47403-6

  • eBook Packages: Springer Book Archive