Computations of stable pseudoisotopy spaces for aspherical manifolds

Survey Articles
Part of the Lecture Notes in Mathematics book series (LNM, volume 1474)


Riemannian Manifold Sectional Curvature Spectral Sequence Homotopy Type Homotopy Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    S. I. Al'ber, Spaces of mappings into a manifold with negative curvature, Dokl. Akad. Naud, SSSR, Tom 178 (1968), No. 1.Google Scholar
  2. (2).
    D. R. Anderson and W.-c. Hsiang, The functors K−i and pseudoisotopies of polyhedra, Ann. of Math. 105 (1977), 201–223.MathSciNetCrossRefzbMATHGoogle Scholar
  3. (3).
    W. Ballman, M. Gromov, and V. Schroeder, Manifolds of nonpositive curvature, Birkhauser (1985).Google Scholar
  4. (4).
    J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109–160.MathSciNetCrossRefzbMATHGoogle Scholar
  5. (5).
    F. T. Farrell and W.-c. Hsiang, The Whitehead groups of poly-(finite or cyclic) groups, J. London Math. Soc. 24 (1981), 308–324.MathSciNetCrossRefzbMATHGoogle Scholar
  6. (6).
    F. T. Farrell and L. E. Jones, K-theory and dynamics, II, Ann. of Math. 126 (1987), 451–493.MathSciNetCrossRefzbMATHGoogle Scholar
  7. (7).
    F. T. Farrell and L. E. Jones, Algebraic K-theory of spaces stratified fibered over hyperbolic orbifolds, Proc. Nat. Acad. Sci. U. S. A. 83 (1986), 5364–5366.MathSciNetCrossRefzbMATHGoogle Scholar
  8. (8).
    F. T. Farrell and L. E. Jones, A topological analogue of Mostow's rigidity theorem, J. Amer. Math. Soc. 2 (1989), 257–370.MathSciNetzbMATHGoogle Scholar
  9. (9).
    F. T. Farrell and L. E. Jones, Rigidity and other topological aspects of compact non-positively curved manifolds, Bull. Amer. Math. Soc., in press.Google Scholar
  10. (10).
    P. Hartman, On homotopic harmonic maps, Canadian J. Math. 19 (1967), 673–687.MathSciNetCrossRefzbMATHGoogle Scholar
  11. (11).
    A. E. Hatcher, Concordance spaces, higher simple homotopy theory, and applications, Proc. Symp. Pure Math. 32 (1978), 3–21.MathSciNetCrossRefzbMATHGoogle Scholar
  12. (12).
    A. E. Hatcher and J. B. Wagoner, Pseudoisotopies of compact manifolds, Asterisque 6 (1973).Google Scholar
  13. (13).
    I. M. James, Ex-homotopy theory, Illinois J. Math. 15 (1971), 324–337.MathSciNetzbMATHGoogle Scholar
  14. (14).
    A. J. Nicas, On the higher Whitehead groups of a Bieberbach group, Trans. Amer. Math. Soc. 287 (1985), 853–859.MathSciNetCrossRefzbMATHGoogle Scholar
  15. (15).
    F. Quinn, Ends of maps, II, Invent. Math. 68 (1982), 353–424.MathSciNetCrossRefzbMATHGoogle Scholar
  16. (16).
    F. Quinn, Algebraic K-theory of poly-(finite or cyclic) groups, Bull. Amer. Math. Soc. 12 (1985), 221–226.MathSciNetCrossRefzbMATHGoogle Scholar
  17. (17).
    I. A. Volodin, Generalized Whitehead groups and pseudoisotopies, Uspehi Mat. Nauk. 27 (1972), 229–230.MathSciNetGoogle Scholar
  18. (18).
    F. Waldhausen, Algebraic K-theory of generalized free products, Ann. of Math. 108 (1978), 135–256.MathSciNetCrossRefzbMATHGoogle Scholar
  19. (19).
    F. Waldhausen, Algebraic K-theory of topological spaces, I. Proc. Symp. Pure Math. 32 (1978), 35–60.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA
  2. 2.Department of MathematicsState University of New York at StonyBrookStony BrookUSA

Personalised recommendations