Advertisement

Equivariant finiteness obstruction and its geometric applications - A survey

Survey Articles
Part of the Lecture Notes in Mathematics book series (LNM, volume 1474)

Keywords

Finite Group Product Formula Whitehead Group Restriction Homomorphism Finite Group Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.R. Anderson: Torsion invariants and actions of finite groups, Michigan Math. J. 29 (1982), 27–42.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. Andrzejewski: The equivariant Wall finiteness obstruction and Whitehead torsion, Transformation Groups, Poznaʼn 1985, pp. 11–25, Lecture Notes in Math. 1217, Springer Vlg 1986.Google Scholar
  3. 3.
    P. Andrzejewski: An application of equivariant finiteness obstruction — equivariant version of Siebenmann's theorem, (preprint, to appear).Google Scholar
  4. 4.
    P. Andrzejewski: A complement to the theory of equivariant finiteness obstruction (preprint 1989).Google Scholar
  5. 5.
    A.H. Assadi: Extensions of group actions from submanifolds of disks and spheres (preprint).Google Scholar
  6. 6.
    J.A. Baglivo: An equivariant Wall obstruction theory, Trans. Amer. Math. Soc. 256 (1979), 305–324.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    H. Bass, A. Heller, R. Swan: The Whitehead group of a polynomial extension, Publ. Math. IHES 22 (1964), 67–79.MathSciNetzbMATHGoogle Scholar
  8. 8.
    G.E. Bredon: Introduction to compact transformation groups, Academic Press, N.Y. 1972.zbMATHGoogle Scholar
  9. 9.
    S.E. Cappell, S. Weinberger: Homology propagation of group actions, Comm. Pure and Appl. Math. 40 (1987), 723–744.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    T.A. Chapman: Controlled simple homotopy theory and applications, Lecture Notes in Math. 1009, Springer Vlg 1983.Google Scholar
  11. 11.
    M.M.Cohen: A course in simple-homotopy theory, Graduate Texts in Math., Springer Vlg 1973.Google Scholar
  12. 12.
    T. tom Dieck: Über projektive Moduln und Endlichkeitschindernisse bei Transformationsgruppen, Manuscripta Math. 34 (1981), 135–155.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    T. tom Dieck: Transformation groups, de Gruyter, Berlin 1987.CrossRefzbMATHGoogle Scholar
  14. 14.
    T. tom Dieck, T. Petrie: Homotopy representations of finite groups, Publ. Math. IHES 56 (1982), 129–170.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    W. Dorabiała: On the equivariant homotopy type of G-fibrations, (preprint, to appear).Google Scholar
  16. 16.
    K.H. Dovermann: personal communication.Google Scholar
  17. 17.
    K.H. Dovermann, M. Rothenberg: An equivariant surgery sequence and equivariant diffeomorphism and homeomorphism classification, Topology Symposium (Siegen 1979), pp. 257–280, Lecture Notes in Math. 788, Springer Vlg 1980.Google Scholar
  18. 18.
    K.H. Dovermann, M. Rothenberg: Equivariant surgery and classification of finite group actions on manifolds, Memoirs Amer. Math. Soc. 379 (1988).Google Scholar
  19. 19.
    S. Ferry: A simple-homotopy approach to the finiteness obstruction, Shape Theory and Geometric Topology, pp. 73–81, Lecture Notes in Math. 870, Springer Vlg 1981.Google Scholar
  20. 20.
    S.M. Gersten: A product formula for Wall's obstruction, Amer. J. Math. 88 (1966), 337–346.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    K. Iizuka: Finiteness conditions for G-CW-complexes, Japan. J. Math. 10 (1984), 55–69.MathSciNetzbMATHGoogle Scholar
  22. 22.
    S. Illman: Smooth equivariant triangulations of G-manifolds for G a finite group, Math. Ann. 233 (1978), 199–220.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    S. Illman: The equivariant triangulation theorem for actions of compact Lie groups, Math. Ann. 262 (1983), 487–501.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    S. Illman: A product formula for equivariant Whitehead torsion and geometric applications, Transformation Groups, Poznaʼn 1985, pp. 123–142, Lecture Notes in Math. 1217, Springer Vlg 1986.Google Scholar
  25. 25.
    S. Illman: Actions of compact Lie groups and the equivariant Whitehead group, Osaka J. Math. 23 (1986), 881–927.MathSciNetzbMATHGoogle Scholar
  26. 26.
    S. Illman: On some recent questions in equivariant simple homotopy theory, Transformation Groups and Whitehead Torsion, Proc. RIMS 633, Kyoto Univ. 1987, pp.19–33.Google Scholar
  27. 27.
    S. Illman: The restriction homomorphism Res H: Wh G(X) → Wh H (X) for G a compact Lie group, (preprint, 1989).Google Scholar
  28. 28.
    R.C. Kirby, L.C. Siebenmann: Foundational essays on topological manifolds, smoothings and triangulations, Ann. Math. Studies 88 (1977), Princeton Univ. Press.Google Scholar
  29. 29.
    H.T. Ku, M.C. Ku: Obstruction theory for finite group actions, Osaka J. Math. 18 (1981), 509–523.MathSciNetzbMATHGoogle Scholar
  30. 30.
    S. Kwasik: On the equivariant homotopy type of G-ANR's, Proc. Amer. Math. Soc. 267 (1981), 193–194.MathSciNetzbMATHGoogle Scholar
  31. 31.
    S. Kwasik: On equivariant finiteness, compositio Math. 48 (1983), 363–372.MathSciNetzbMATHGoogle Scholar
  32. 32.
    S. Kwasik: Locally smooth G-manifolds, Amer. J. Math. 108 (1986), 27–37.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    W. Lück: The geometric finiteness obstruction, Proc. London Math. Soc. 54 (1987), 367–384MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    W. Lück: Transformation groups and algebraic K-theory, Lecture Notes in Math. 1408, Springer Vlg 1989.Google Scholar
  35. 35.
    I. Madsen, C.B. Thomas, C.T.C. Wall: The topological spherical space form problem-II: existence of free actions, Topology 15 (1976), 375–382.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    I. Madsen, M. Rothenberg: On the classification of G-spheres III: TOP automorphism groups, preprint 14 (1985), Aarhus Univ.Google Scholar
  37. 37.
    M. Murayama: On G-ANR's and their G-homotopy types, Osaka J. Math. 20 (1983), 479–512.MathSciNetzbMATHGoogle Scholar
  38. 38.
    R. Oliver: Fixed-point sets of group actions on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155–177.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    R. Oliver: Smooth compact Lie group actions on disks, Math. Zeit. 149 (1976), 79–96.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    R. Oliver: G-actions on disks and permutation representations II, Math. Zeit. 157 (1977), 237–263.MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    R. Oliver: G-actions on disks and permutation representations, J. Algebra 50 (1978), 44–62.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    R. Oliver, T. Petrie: G-CW-surgery and K o (ZG), Math. Zeit. 179 (1982), 11–42.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    T. Petrie: G-maps and the projective class group, Comment. Math. Helv. 51 (1976), 611–626.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    F. Quinn: Ends of maps, II, Invent. Math. 68 (1982), 353–424.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    A.A. Ranicki: The algebraic theory of finiteness obstruction, Math. Scand. 57 (1985), 105–126.MathSciNetzbMATHGoogle Scholar
  46. 46.
    L.C. Siebenmann: The obstruction to finding a boundary for an open manifold in dimension greater than five, Ph. D. thesis, Princeton 1965.Google Scholar
  47. 47.
    M. Steinberger: The equivariant topological s-cobordism theorem, Invent. Math. 91 (1988), 61–104.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    M. Steinberger, J.E. West: Equivariant h-cobordisms and finiteness obstructions, Bull. Amer. Math. Soc. 12 (1985), 217–220.MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    M. Steinberger, J.E. West: On the geometric topology of locally linear actions of finite groups, Geometric and Algebraic Topology, pp. 181–204, Banach Center Publ. 18, Warsaw 1986.Google Scholar
  50. 50.
    M. Steinberger, J.E. West: Equivariant controlled simple homotopy theory (in preparation)Google Scholar
  51. 51.
    M. Steinberger, J.E. West: Controlled finiteness is the obstruction to equivariant handle decomposition, (preprint).Google Scholar
  52. 52.
    M. Steinberger, J.E. West: Equivariant handles in finite group (preprint). actions, (preprint).Google Scholar
  53. 53.
    R.G. Swan: Periodic resolutions for finite groups, Ann. Math. 72 (1960), 267–291.MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    C.B. Thomas, C.T.C. Wall: The topological spherical space form problem-I, Compositio Math. 23 (1971), 101–114.MathSciNetzbMATHGoogle Scholar
  55. 55.
    C.T.C. Wall: Finiteness conditions for CW-complexes, Ann. Math. 81 (1965), 55–69.MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    C.T.C. Wall: Finiteness conditions for CW-complexes, II, Proc. Royal Soc. London, Ser. A, 295 (1966), 129–139.MathSciNetCrossRefGoogle Scholar
  57. 57.
    A.G. Wasserman: Equivariant differential topology, Topology 8 (1969), 127–150.MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    D. Webb: Equivariantly finite manifolds with no handle structure, (preprint).Google Scholar
  59. 59.
    S. Weinberger: Constructions of group actions: a survey of some recent developments, Group actions on manifolds, pp. 269–298, Contemporary Math. 36 (1985).Google Scholar
  60. 60.
    S. Weinberger: an example in: Problems submitted to the AMS Summer Research Conference on Group Actions, Group actions on manifolds, ed. R.E. Schultz, pp. 513–568, Contemporary Math. 36 (1985).Google Scholar
  61. 61.
    S. Weinberger: Class numbers, the Novikov conjecture and transformation groups, Topology 27 (1988), 353–365.MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    J.E. West: Mapping Hilbert cube manifolds to ANRs, Ann. Math. 106 (1977), 1–18.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  1. 1.Instytut MatematykiUniwersytet Szczeciʼnski ul.Szczecin 3Poland

Personalised recommendations