Some applications of shifted subgroups in transformation groups

Survey Articles
Part of the Lecture Notes in Mathematics book series (LNM, volume 1474)


Finite Group Prime Ideal Spectral Sequence Equivariant Cohomology Cochain Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Adem, 1986]
    A. Adem, Finite transformation groups and their homology representations, Thesis, Princeton University, 1986.Google Scholar
  2. [Adem, 1988]
    A. Adem, Cohomological restrictions on finite group actions, J. of Pure and Applied Algebra 54 (1988), 117–139.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Adem, 1989]
    A. Adem, Torsion in equivariant cohomology, Comment. Math. Helvetici 64 (1989), 401–411.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Adem, 1989a]
    A. Adem, Homology representations of finite transformation groups, Algebraic Topology, Proceedings, Aracta 1986, Edited by G. Carlsson, R. L. Cohen, H. R. Miller and D. C. Ravenel, Lecture Notes in Mathematics 1370, 15–23, Springer-Verlag, Berlin 1989.Google Scholar
  5. [Adem, Browder, 1988]
    A. Adem and W. Browder, The free rank of symmetry of (Sn)k, Invent. Math. 92 (1988), 431–440.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Allday, Puppe, 1985]
    C. Allday and V. Puppe, On the localization theorem at the cochain level and free torus actions, Proc. Göttingen Conf. on Algebraic Topology 1984, Edited by. L. Smith, Lecture Notes in Mathematics 1172, 1–16, Springer-Verlag, Berlin 1985.Google Scholar
  7. [Allday, Puppe]
    C. Allday and V. Puppe, Cohomological Methods in Transformation Groups, to appear.Google Scholar
  8. [Assadi, 1988]
    A. Assadi, Varieties in finite transformation groups, Bull. Amer. Math. Soc. (New Series) 19 (1988), 459–463.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Assadi, 1989a]
    A. Assadi, Integral representations of finite transformation groups I, J. of Pure and Applied Algebra 59 (1989), 215–226.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Assadi, 1989 b]
    A. Assadi, Integral representations of finite transformation groups II: non-simply-connected spaces, J. of Pure and Applied Algebra 59 (1989), 227–236.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [Assadi]
    A. Assadi, An algebraic invariant for finite group actions and applications, to appear.Google Scholar
  12. [Baumgartner]
    C. Baumgartner, On the cohomology of free p-torus actions, to appear.Google Scholar
  13. [Benson, 1984]
    D. J. Benson, Modular Representation Theory: New Trends and Methods, Lecture Notes in Mathematics 1081, Springer-Verlag, Berlin 1984.zbMATHGoogle Scholar
  14. [Benson, Carlson, 1987]
    D. J. Benson and J. F. Carlson, Complexity and multiple complexes, Math. Zeit. 195 (1987), 221–238.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [Bredon, 1972]
    G. E. Bredon, Introduction to Compact Transformation groups, Academic Press, New York 1972.zbMATHGoogle Scholar
  16. [Browder, 1983]
    W. Browder, Cohomology and group actions, Invent. Math. 71 (1983), 599–607.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Browder, 1988]
    W. Browder, Actions of elementary abelian p-groups, Topology 27 (1988), 459–472.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [Brown, 1974]
    K. S. Brown, Euler characteristics of discrete groups and G-spaces, Invent. Math 27 (1974), 229–264.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [Brown, 1982]
    K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics 87, Springer-Verlag, Berlin 1982.zbMATHGoogle Scholar
  20. [Carlson, 1983]
    J. F. Carlson, The varieties and the cohomology ring of a module, J. of Algebra 85 (1983), 104–143.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [Carlson, 1989]
    J. F. Carlson, Exponents of modules and maps, Invent. Math. 95 (1989), 13–24.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [Carlsson, 1983]
    G. Carlsson, On the homology of finite free (ℤ/2)n-complexes, Invent. Math. 74 (1983), 139–147.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Dade, 1978]
    E. C. Dade, Endo-permutation modules over p-groups II, Ann. of Math. 108 (1978), 317–346.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [Fuller, 1989]
    K. R. Fuller, Artinian Rings, Notas de Mathematica 2, Universidad de Murcia 1989, a supplement to F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Graduate Texts in Mathematics 13, Springer-Verlag, Berlin, 1974.Google Scholar
  25. [Gottlieb, 1986]
    D. H. Gottlieb, The trace of an action and the degree of a map, Trans. Amer. Math. Soc. 293 (1986), 381–410.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [Heller, 1959]
    A. Heller, A note on spaces with operators, Illinois J. Math. 3 (1959), 98–100.MathSciNetzbMATHGoogle Scholar
  27. [Illman, 1978]
    S. Illman, Smooth equivariant triangulations of G-manifolds for G a finite group, Math. Ann. 233 (1978), 199–220.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [Kroll, 1984]
    O. Kroll, complexity and elementary abelian p-groups, J. of Algebra 88 (1984), 155–172.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [Skjelbred, 1975]
    T. Skjelbred, Actions of p-tori on projective spaces, University of Oslo, Insitute of Mathematics, Preprint Series No. 4, January 27, 1975.Google Scholar
  30. [Spanier, 1966]
    E. H. Spanier, Algebra Topology, McGraw-Hill, New York, 1966.zbMATHGoogle Scholar
  31. [Swan, 1960]
    R. G. Swan, A new method in fixed point theory, Comment. Math. Helvetici 34 (1960), 1–16.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

There are no affiliations available

Personalised recommendations