Advertisement

Continuation of solutions to elliptic equations and localization of singularities

  • B. Yu. Sternin
  • V. E. Shatalov
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1520)

Keywords

Cauchy Problem Harmonic Function Entire Function Analytic Continuation Helmholtz Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AK1].
    V.F. Apeltzin, A.G. Kürktchan, Analytic Propeties of Wave Fields, MGU, Moscow, 1990.Google Scholar
  2. [BS1].
    J. Bony, P. Shapira, Existence et prolongement des solution holomorphes des equations aux dérivés partielles, Indent.Math. 17 (1972), 95–105.Google Scholar
  3. [Co1].
    D. Colton, On the Inverse Scattering Problems for Axially Symmetric Solutions of the Helmholtz Equation, Quart. J. Math. Oxford (2) 22 (1971), 125–130.MathSciNetCrossRefMATHGoogle Scholar
  4. [Co2].
    D. Colton, Integral Operators and Inverse Problems in Scattering Theory, Function Theoretic Method for Partial Differential Equations, Marmstadt, 1976, Springer Verlag Berlin/Heidelberg/New York, 1976, pp. 17–28.Google Scholar
  5. [CH1].
    R.Courant, D.Hilbert, Methoden der mathematischen Phisik, vol. 2, Berlin, 1937; Methods of Mathematical Phisics Interscience, New York, 1962.Google Scholar
  6. [Da1].
    Ph.Davis, The Schwarz Functions and its Applications, Carus Mathematical Monographs, MAA, 1979.Google Scholar
  7. [Ga1].
    P. Garabedian, Partial Differential Equations with More Than Two Independent Variables in the Complex Domain, J.Math. Mech. 9 no. 2 (1960), 241–271.MathSciNetMATHGoogle Scholar
  8. [Ga2].
    P.Garabedian, Lectures on Function Theory and PDE, Rice University Studies 49 no. 4 (1963).Google Scholar
  9. [Ga3].
    P. Garabedian, Partial differential equations, John Wiley and Sons Inc., New York-London-Sidney, 1964.MATHGoogle Scholar
  10. [Gr1].
    D.-A. Grave, Sur le problème de Dirichlet, Assoc. Francaise pour l'Avancement des Sciences 24 (1895), 111–136, Completes Rendus (Bordeaux).Google Scholar
  11. [Ha1].
    J.Hadamard, Le problème de Cauchy et les équations aux dérivées partielles linéaires hyperboliques, Paris, 1932.Google Scholar
  12. [HLT1].
    Y. Hamada, J. Leray, A. Takeuchi, Prolongements analytiques de la solution du problème de Cauchy linéaire, J.Math. Pures Appl. 64 (1985), 257–319.MathSciNetMATHGoogle Scholar
  13. [He1].
    P. Henrici, A Survey of I.N. Vekua's Theory of Elliptic Partial Differential Equations with Analytic Coefficeints, Z. Anegew. Math. Phys. 8 (1957), 169–203.MathSciNetCrossRefMATHGoogle Scholar
  14. [Hr1].
    G.Herglotz, Über die analytishe Forsetzung des Potentials ins Innere der anziehenden Massen, Gekrönte Preisschr. der Jablonwskischen Gesellsch zu Leipzig, 1914, pp. 56.Google Scholar
  15. [Je1].
    J.Jeans, The Mathematicial Theory of Electricity and Magnetism, fifth ed., Reprinted 1966 by Cambrige Univ. Press, 1925.Google Scholar
  16. [Jh1].
    F. John, The Fundamental Solution of Linear Elliptic Differential Equations with Analytic Coefficients, Comm. pure and appl. Math. 2 (1950), 213–304.MathSciNetGoogle Scholar
  17. [Jh2].
    F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations, Interscience Publishers Inc., New York, Interscience Publishers, Ltd., London, 1955.MATHGoogle Scholar
  18. [Jo1].
    G. Johnsson, Global Existence Results for Linear Analytic Partial Differential Equations, research report TRITA-MAT 1989-12, Royal Institute of Technology, Stockholm, 1989.MATHGoogle Scholar
  19. [Kh1].
    D.Khavinson, On Reflection of Harmonic Functions in Surfaces of Revolution, Preprint.Google Scholar
  20. [Kh2].
    D.Khavinson, Singularities of Harmonic Functions in Cn, Proceedings of Symposia of Pure Applied Math., (to be published).Google Scholar
  21. [KS1].
    D. Khavinson, H.S. Shapiro, The Vekua Hull of a Plane Domain, Research report TRITA-MAT 1989-20, Royal Institute of Technology, Stockholm, 1989.MATHGoogle Scholar
  22. [KS2].
    D. Khavinson, H.S. Shapiro, The Schwartz Potential in Rn and Cauchy's Problem for the Laplace Equation, Preprint, 1988, research report TRITA-MAT-1989-36, Royal Institute of Technology, Stockholm, 1989.Google Scholar
  23. [KS3].
    D. Khavinson, H.S. Shapiro, Remarks on the Reflection Principle for Harmonic Functions, Research report TRITA-MAT-1989-13, Royal Institute of Technology, Stockholm, 1989, Journal d'analyse mathematique 54 (1990), 60–76.MATHGoogle Scholar
  24. [Kü1].
    A.G. Kürktchan, On a Method of Auxiliary Currents and Sources in Wave Differential Problems, Radiotekhnika i Elektronika 29 no. 1 (1984), 2129–2139.Google Scholar
  25. [Kü2].
    A.G. Kürktchan, Representation of Diffractional Fields by Wave potentials and Method of Auxiliary Currents in Problem on Diffraction of Electromagnetic Wavws, Radiotekhnika i Elektronika 31 no. 1 (1986), 20–27.Google Scholar
  26. [Le1].
    J. Leray, Unifoamisation de la solution du problème linéaire analytique près de la variété qui porte les donneś de Cauchy, Bull Soc. Math. France 85 (1957), 389–429.MathSciNetMATHGoogle Scholar
  27. [Le2].
    J. Leray, Le calcul différentiel et intégral sur une variété analytique complexe (Problème de Cauchy, III), Bull. Soc. Math. France 87 fasc.II (1959), 81–180.MathSciNetMATHGoogle Scholar
  28. [Lv1].
    E.E. Levi, Sulle equazioni lineari totalmente elittiche alle derivate parziali, Rend. Circ. Mat. Palermo 24 (1907), 275–317.CrossRefMATHGoogle Scholar
  29. [Lw1].
    H. Lewy, On the Reflection Laws of Second Order Differential Equations in Two Independant Variables, Bull. Amer.Math.Soc. 65 (1959), 37–58.MathSciNetCrossRefMATHGoogle Scholar
  30. [Lw2].
    H. Lewy, Neuer Bewies des analytishen Charakters der Loesungen elliptisher Differentialgleichungen, Math.Ann. 101 (1929), 609–619.MathSciNetCrossRefGoogle Scholar
  31. [LM1].
    J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968.MATHGoogle Scholar
  32. [Mi1].
    R.F. Millar, On the Rayleigh Assumption in Scattering by a Periodic Surface, Proceedings of the Cambridge philosophical society 65 no. 3 (1969), 773–792.MathSciNetCrossRefGoogle Scholar
  33. [Mi2].
    R.F. Millar, Rayleigh Hypothesis in Scattering Problems, Electron Letters 5 (1969), 416–418.MathSciNetCrossRefGoogle Scholar
  34. [Mi3].
    R.F. Millar, The Location of Singularities of Two-dimensional Harmonic Functions, I, Theory, SIAM J.Math.Anal. 1 (1970), 333–344; II, Applications, 345–353.MathSciNetCrossRefMATHGoogle Scholar
  35. [Mi4].
    R.F. Millar, On the Rayleigh Assumption in Scattering by a Periodic Surface, Proceedings of the Cambridge Philosophical Society 69 no. 1 (1971), 217–225.MathSciNetCrossRefGoogle Scholar
  36. [Mi5].
    R.F. Millar, Singularities of Solutions to Linear Second Order Analytic Elliptic Equations in Two Independant Variables, I, Applicable Anal. 1 (1971), 101–121.MathSciNetCrossRefMATHGoogle Scholar
  37. [Mi6].
    R.F. Millar, Singularities of Two-dimensional Exterior Solutions of the Helmholtz Equation, Proceedings of the Cambridge philosophical Society 69 no. 1 (1971), 175–188.MathSciNetCrossRefMATHGoogle Scholar
  38. [Mi7].
    R.F. Millar, Singularities of Solutions to Linear Second Order Analytic Equations in Two Independant Variables, II, Applicable Anal. 2 (1973), 301–320.MathSciNetMATHGoogle Scholar
  39. [Mi8].
    R.F.Millar, The singularities of solutions to analytic elliptic boundary value problems, Lecture Notes in Math no. 561 (1976), Function Theoretic Methods for Partial Differential Equations, Darmstadt, 1976, Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  40. [Mi9].
    R.F. Millar, Singularities of Solutions to Exterior Analytic Boundary Value Problems for Helmholtz Equation in Three Independant Variables, I. The plain boundary, SIAM J. on Math. Anal. 7 no. 1 (1976), 131–156.MathSciNetCrossRefMATHGoogle Scholar
  41. [Mi10].
    R.F. Millar, Singularities of Solutions to Exterior Analytic Boundary Value Problems for Helmholtz Equation in Three Independant Variables, II. The axisymmetric boundary, SIAM J. Math. Anal. 10 no. 4 (1979), 682–694.MathSciNetCrossRefMATHGoogle Scholar
  42. [Mi11].
    R.F. Millar, The Analytic Continuation of Solutions to Elliptic Boundary Value Problems in Two Independant Variables, J.Math. Anal. and Appl. 76 no. 2 (1980), 498–515.MathSciNetCrossRefMATHGoogle Scholar
  43. [Mi12].
    R.F. Millar, The Analytic Continuation of Solutions of the Generalized Axially Symmetric Helmholtz Equations, Archive for Rat. Mech.Anal 81 no. 4 (1983), 349–372.MathSciNetCrossRefMATHGoogle Scholar
  44. [Mi13].
    R.F. Millar, The Analytic Cauchy Problem for Fourth Order Elliptic Equations in Two Independent Variables, SIAM J.Math. Anal. 15 no. 5 (1984), 964–978.MathSciNetCrossRefMATHGoogle Scholar
  45. [Mi14].
    R.F.Millar, Integral Representations for Solutions to Some Differential Equations That Arise in Wave Theory, Wave phenomena: Modern theory and applications (Toronto, 1983), North-Holland Math. Stud. 97, North-Holland Amsterdam-New York, 1984, pp. 391–408.Google Scholar
  46. [Mi15].
    R.F. Millar, Singularities and the Rayleigh Hypothesis for Solutions to the Helmholtz Equation, IMA J.Appl. Math. 37 no. 2 (1986), 155–171.MathSciNetCrossRefMATHGoogle Scholar
  47. [Mi16].
    R.F. Millar, Application of the Schwarz Function to Boundary Problems for Laplace's Equation, MAth. Methods Appl. Sci. 10 no. 1 (1988), 67–86.MathSciNetCrossRefMATHGoogle Scholar
  48. [My1].
    M. Miyake, Global and Local Goursat Problems in a Class of Holomorphic or Partially Holomorphic Functions, J. Diff Eq. 39 (1981), 445–463.MathSciNetCrossRefMATHGoogle Scholar
  49. [Ph1].
    F. Pham, Introduction à l'étude topologique des singularitś de Landau, Mém. Sci. Math. fasc. 164, Gauthier-Villars, Paris, 1967.Google Scholar
  50. [Sc1].
    H.A.Schwarz, Ueber die Integration der partiellen Differentialglerchung \(\frac{{\partial ^2 u}}{{\partial x^2 }} + \frac{{\partial ^2 u}}{{\partial y^2 }} = 0\) unter vorgeschriebonen Grenz-und Unstetigkeitsbedingungen, Monatsber. der Königl Akad. der Wiss. zu Berlin (1870), 767–795.Google Scholar
  51. [Sh1].
    H.S.Shapiro, The Schwarz Function and its Generalization to Higer Dimensions, University of Arkansas-Fayetteville Lecture Notes (1987), John Wiley.Google Scholar
  52. [Sh2].
    H.S. Shapiro, An Algebraic Theorem of E.Fisher and the Holomorphic Goursat Problem, Bull. London Math. Soc. 21 (1989), 513–537.MathSciNetCrossRefMATHGoogle Scholar
  53. [Sh3].
    H.S. Shapiro, Global Geometric Aspects of Cauchy's Problem for the Laplace operator, Research report TRITA-MAT-1989-37, Royal Institute of Technology, Stockholm, 1989.Google Scholar
  54. [Sl1].
    B.D. Sleeman, The Three-dimensional Inverse Scattering Problem for the Helmholtz Equation, Proc. Cambridge Phil. Soc. 73 (1973), 477–488.MathSciNetCrossRefMATHGoogle Scholar
  55. [StS1].
    B.Yu.Sternin, V.E.Shatalov, Characteristic Cauchy Problem on a Complex Analytic Manifold, Lecture Notes in Math. 1108 (1984).Google Scholar
  56. [StS2].
    B.Yu. Sternin, V.E. Shatalov, Notes on a Problem of Balayage, Preprint, Moscow, 1990, pp. 23.Google Scholar
  57. [StS3].
    B.Yu.Sternin, V.E.Shatalov, The Laplace. Radon Transformation in Complex Analysis and some its Applications, (to be published), Soviet Mathem. (1991).Google Scholar
  58. [StS4].
    B.Yu. Sternin, V.E. Shatalov, On an Integral Transform of Complex-analytic Functions, Doklady Akad. Nauk SSSR 280 no. 3 (1985), 553–556.MathSciNetMATHGoogle Scholar
  59. [StS5].
    B.Yu. Sternin, V.E. Shatalov, On an Integral Transform of Complex-analytic Functions, Izvestiya Akad. Nauk SSSR (ser. matem.) 5 (1986), 1054–1076.MathSciNetGoogle Scholar
  60. [StS6].
    B.Yu. Sternin, V.E. Shatalov, Singularities of Differential Equations on Complex Manifolds, Doklady Akad. Nauk SSSR 292 no. 5 (1987), 1058–1062.MathSciNetMATHGoogle Scholar
  61. [StS7].
    B.Yu. Sternin, V.E. Shatalov, Singularities of Solutions of Differential Equations on Complex Manifolds (Characteristic Case), Geometry and Theory of Singularities in Non-linear Equations, VGU, Voronezh, 1987.MATHGoogle Scholar
  62. [StS8].
    B.Yu. Sternin, V.E. Shatalov, Laplace-Radon Integral Operators and Singularities of Solutions of Differential Equations on Complex Manifolds, Global Analysis and Mathematical Phisics, VGU, Voronezh, 1987.MATHGoogle Scholar
  63. [StS9].
    B.Yu. Sternin, V.E. Shatalov, Asymptotic Expansions of Solutions of Differential Equations on Complex Manifolds, Doklady Akad. Nauk SSSR 295 no. 1 (1987), 38–41.MathSciNetMATHGoogle Scholar
  64. [StS10].
    B.Yu. Sternin, V.E. Shatalov, On an Integral Representation and Connected Transform of Complex Analytic Functions, Doklady Akad. Nauk SSSR 298 no. 1 (1988), 44–48.MathSciNetMATHGoogle Scholar
  65. [StS11].
    B.Yu. Sternin, V.E. Shatalov, Laplace-Radon Integral Transform and its Applications to Non-Homogeneous Cauchy Problem in Complex space, Differentzialnye Uravneniya 24 no. 1 (1988), 167–174.MathSciNetMATHGoogle Scholar
  66. [StS12].
    B.Yu. Sternin, V.E. Shatalov, Differential Equations on Complex-analytic Manifolds and Maslov's Canonical Operstor, Uspekhi Maternaticheskikh Nauk 43(3) no. 261 (1988), 99–124.MathSciNetMATHGoogle Scholar
  67. [StS13].
    B.Yu. Sternin, V.E. Shatalov, Maslov's Method in Analytic Theory of Differential Equations with partial derivatives, (to appear), Nauka, Moscow, 1991.MATHGoogle Scholar
  68. [StS14].
    B.Yu. Sternin, V.E. Shatalov, Singularities of solutions of Differential Equations on Complex Analytic Manifolds and “Balayage” Problem, (to appear), Proceedings of 3d School “Geometry ana Analysis” (1991), KGU, Kemerovo.Google Scholar
  69. [StS15].
    B.Yu. Sternin, V.E. Shatalov, On Fourier-Maslov Transform in Space of Multiple-valued Analytic Functions, Matematicheskiye Zametki, Moscow.Google Scholar
  70. [St1].
    E. Study, Einige elementare Bemerkungen über den Prozess der analytischen Fortsetzung, Math Ann. 63 (1907), 239–245.MathSciNetCrossRefMATHGoogle Scholar
  71. [Ve1].
    I.N. Vekua, New Methods for Solving Elliptic Equations, North-Holland Publishing Co. (translated from Russian), Amsterdam, 1967.MATHGoogle Scholar
  72. [WBA1].
    V.H.Weston, J.J.Bowman, E.Ar, On the electromagnetic inverse scattering problems, Arch. Rational Mech. Anal. (1968/69), 199–213.Google Scholar
  73. [Ze1].
    M. Zerner, Domaine d'holomorphie des fonctions vérifiant une équation aux dérivées partielles, C. R. Acad. Sci. Paris 272 (1971), 1646–1648.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • B. Yu. Sternin
    • 1
  • V. E. Shatalov
    • 2
  1. 1.Moscow State UniversityMoscowUSSR
  2. 2.Moscow Institute of Electronic EngineeringMoscowUSSR

Personalised recommendations