On fredholmian aspects of linear transmission problems

  • G. N. Khimshiashvili
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1520)


Riemann Surface Chern Class Fredholm Operator Riemann Sphere Loop Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gakhov F.D. Boundary value problems. Moscow, 1977 (in Russian).Google Scholar
  2. 2.
    Khimshiashvili G.N. On Riemann boundary value problem with values in a compact Lie group.-Trudy IPM TGU, v.3, No.1, 1988 (in Russian).Google Scholar
  3. 3.
    Khimshiashvili G.N. On Riemann-Hilbert problem for a compact Lie group.-DAN SSSR (Soviet Math. Doklady), 1990, v.310, No.5.Google Scholar
  4. 4.
    Eells J.Fredholm structures. In: Proc. Symp. Pure Math., vol.18, AMS, 1970.Google Scholar
  5. 5.
    Pressley A., Segal G. Loop groups. Clarendon Press, Oxford, 1988.zbMATHGoogle Scholar
  6. 6.
    Boyarski B. Abstract problem of a linear conjugation and Fredholm pairs of subspaces. In: Boundary value problems. Tbilisi, 1979 (in Russian).Google Scholar
  7. 7.
    Bojarski B. Some analytical and geometrical aspects of the Riemann-Hilbert problem. In: Complex analysis. Berlin, 1983.Google Scholar
  8. 8.
    Adams J.F. Lectures on Lie groups. W.A.Benjamin Inc., N.Y.-Amsterdam, 1969.zbMATHGoogle Scholar
  9. 9.
    Disney S. The exponents of loops on the complex general linear group.-Topology, 1973, V.12, No.4.Google Scholar
  10. 10.
    Atiyah M., Singer I. Index theory for skew-adjoint G Fredholm operators.-Publ. Math. IHES, 1970, V.37, 5–26.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Khimshiashvili G. Lie groups and transmission problems on Riemann surfaces.-Soobshch. Akad. Nauk Gruz. SSR, 1990, V.137, No.1.Google Scholar
  12. 12.
    Elworthy K., Tromba A. Differential structures and Fredholm maps on Banach manifolds.-Proc. Symp. Pure Math., 1970, V.15.Google Scholar
  13. 13.
    Freed D. The geometry of loop groups.-J. Diff. Geometry, 1988, V.28, No.3.Google Scholar
  14. 14.
    Bott R. The space of loops on a Lie group.-Mich. Math. J., 1958, V.5, No.1.Google Scholar
  15. 15.
    Palamodov V.P. Deformations of complex spaces. In: Encyclopaedia of Mathematical Sciences. Vol.10, Springer, 1989.Google Scholar
  16. 16.
    Laiterer Yu. Holomorphic vector bundles and the Oka-Grauert principle. In: Encyclopaedia of Mathematical Sciences. Vol.10. Springer, 1989.Google Scholar
  17. 17.
    Muskhelishvili N.I. Singular integral equations. Moscow, 1977 (in Russian).Google Scholar
  18. 18.
    Uhlenbeck K. Harmonic maps in a Lie group.-Preprint, Univ. Chicago, 1985.Google Scholar
  19. 19.
    Bitsadze A.V. Introduction to the theory of analytic functions. Moscow, 1974 (in Russian).Google Scholar
  20. 20.
    Onishchik A.L. Some notions and applications of the theory of nonabelian cohomologies.-Trudy Mosk. Mat. obshchestva. V.17, 1962 (in Russian)Google Scholar
  21. 21.
    Doi H. Nonlinear equations on a Lie group.-Hiroshima Math. J., 1987, V.17, 535–560.MathSciNetzbMATHGoogle Scholar
  22. 22.
    Koshorke U. K-theory and characteristic classes of Fredholm bundles.-Proc. Symp. Pure Math., 1970, V.15, 95–133.CrossRefGoogle Scholar
  23. 23.
    Mityagin B.S. Homotopic structure of a linear group of a Banach space.-Uspekhi mat. nauk (Russian Math. Surveys), 1970, V.25, vyp.5.Google Scholar
  24. 24.
    Khimshiashvili G.N. To the theory of algebras of singular operators.-In: Trudy Tbil. matem. instituta, 1987 (in Russian).Google Scholar
  25. 25.
    Freed D. An index theorem for families of Fredholm operators.-Topology, 1988, V.27, No.3.Google Scholar
  26. 26.
    Forster O. Riemannian Surfaces. Springer, 1977.Google Scholar
  27. 27.
    Rodin Yu. Generalized analytic functions on Riemann surfaces.-Lect. Notes in Math., 1987, V.1288.Google Scholar
  28. 28.
    Brackx F., Delanghe R., Sommen F. Clifford Analysis. Pitman, 1982.Google Scholar
  29. 29.
    Zaidenberg M., Krein S., Kuchment P., Pankov A. Banach bundles and linear operators.-Uspekhi mat. nauk (Russian Math. Surveys), 1975, v.30, No.5.Google Scholar
  30. 30.
    Shnirel'man A.S. Nonlinear Hilbert problem and degree of quasi-regular mapping.-Mat. sbornik (Soviet Math. Sbornik), 1972, v.89, No.3.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • G. N. Khimshiashvili
    • 1
  1. 1.A.Razmadze Mathematical InstituteGeorgian Academy of SciencesTbilissi, GeorgiaUSSR

Personalised recommendations