Finitely smooth normal forms of vector fields in the vicinity of a rest point

  • I. U. Bronstein
  • A. Ya. Kopanskii
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1520)


Vector Field Normal Form Rest Point Local Homeomorphism Polynomial Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnol'd V.I., Il'yashenko Yu.S. Ordinary differential equations // Encyclopaedia of Math. Sciences. Vol.1. 1988.Google Scholar
  2. 2.
    Hartman Ph. On local homeomorphisms of Euclidean Spaces // Bol.Soc. Mat. Mexicana. 1960. V.5. P.220–241.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Sternberg S. On the structure of local homeomorphisms of Euclidean n-space. II. // Amer. J. Math. 1958. V.80, No.3. P.623–631.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen K.T. Equivalence and decomposition of vector fields about an elementary critical point // Amer. J. Math. 1963. V.85, No.4. P.693–722.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Takens F. Partially hyperbolic fixed points // Topology. 1971. V.10, No.2. P.133–147.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Robinson R.C. Differentiable conjugacy near compact invariant manifolds // Bol. Soc. Brasil. Math. 1971. V.2, No.1. P.33–44.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Belitskii G.R. Normal forms, invariants and local mappings. Kiev, 1979 (in Russian).Google Scholar
  8. 8.
    Sell G.R. Smooth linearization near a fixed point // Amer. J. Math. 1985. V.107, No.5. P.1035–1091.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Samovol V.S. Linearization of systems of differential equations in the vicinity of invariant toroidal manifolds // Trudy Mosk. Mat. obshch. 1979. V.38. P.187–219 (in Russian).MathSciNetzbMATHGoogle Scholar
  10. 10.
    Samovol V.S. Equivalence of systems of differential equations in the neighbourhood of a rest point // Trudy Mosk. Mat. obshch. 1982. V.44. P.213–234 (in Russian).MathSciNetzbMATHGoogle Scholar
  11. 11.
    Samovol V.S. Linearization of an autonomous system in the neighbourhood of a hyperbolic rest point // Diff. uravn. 1987. V.23, No.6. P.1098–1099 (in Russian).Google Scholar
  12. 12.
    Samovol V.S. On smooth linearization of systems of differential equations in the neighbourhood of a saddle rest point // Uspekhi mat. nauk. 1988. T.43. No.4. P.223–224 (in Russian).MathSciNetzbMATHGoogle Scholar
  13. 13.
    Samovol V.S. On some conditions sufficient for smooth linearlization of an autonomous system in the vicinity of a rest point // Izv.AN KazSSR. 1988, No.3. P.41–44 (in Russian).Google Scholar
  14. 14.
    Samovol V.S. Linearization of a system of ordinary differential equations in the neighbourhood of a rest point of the saddle type // DAN UkrSSR. Ser A. 1989. No.1. P.30–33 (in Russian).Google Scholar
  15. 15.
    Samovol V.S. On a necessary and sufficient condition for smooth linearization of an autonomous system on the plane in the vicinity of a rest point // Mat. Zametki. 1989. V.46, No.1. P.67–77 (in Russian).MathSciNetGoogle Scholar
  16. 16.
    Bronstein I.U., Kopanskii A.Ya. Finitely smooth polynomial normal forms of C-diffeomorphisms in the neighbourhood of a fixed point // Funk. analiz i ego prilozh. 1990. V.24, No.2. P.79–80. (in Russian).zbMATHGoogle Scholar
  17. 17.
    Sternberg S. Local contractions and a theorem of Poincaré // Amer.J. Math. 1957. V.79, No.5. P.809–824.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Bronstein I.U., Kopanskii A.Ya. Invariant manifolds and normal forms. Kishinev. 1992 (in Russian).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • I. U. Bronstein
    • 1
  • A. Ya. Kopanskii
    • 1
  1. 1.Institute of Mathematics and Computer CentreAcademy of Sciences of SSR MoldovaChiainĂu, MoldovaUSSR

Personalised recommendations