Fuchsian systems with reducible monodromy and the Riemann-Hilbert problem

  • A. A. Bolibruch
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1520)


Vector Bundle Fundamental Matrix Holomorphic Section Riemann Sphere Jordan Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolibruch A.A. The Riemann-Hilbert problem on a complex projective line. Mat. Zametki (Math. Notes), v.46, No.3, p.118–120 (1989) (in Russian).MathSciNetGoogle Scholar
  2. 2.
    Bolibruch A.A. The Riemann-Hilbert problem. Uspekhi Mat. Nauk (Soviet mathematical surveys), v.45, No.2, p.3–47 (1990) (in Russian).MathSciNetGoogle Scholar
  3. 3.
    Anosov D.V. Hilbert's 21st problem (according to Bolibruch). IMA preprint series, #660 Inst. for Math. and its appl. Univ. of Minnesota (1990).Google Scholar
  4. 4.
    Röhrl H. Das Riemann-Hilbertsche Problem der Theorie der linearen Differentialgleichungen. Math. Ann., b.133, s.1–25 (1957).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Förster O. Riemannsche Flächen. Berlin e.a., Springer-Verlag, 1977.CrossRefzbMATHGoogle Scholar
  6. 6.
    Gantmacher F.R. The theory of matrices. N.Y.: Chelsea, 1977.zbMATHGoogle Scholar
  7. 7.
    Okonek Ch., Schneider M., Spindler H. Vector bundles on complex projective spaces. Birhäuser, 1980.Google Scholar
  8. 8.
    Deligne P. Equations différentielles à points singuliers reguliers. L.N. in math., No.163, 1970.Google Scholar
  9. 9.
    Bolibruch A.A. On the construction of a Fuchsian differential equation with the given monodromy representation. Mat. Zametki (Math. Notes), v.48, No.5, p.22–34 (1990) (in Russian).Google Scholar
  10. 10.
    Ohtsuki M. On the number of apparent singularities of a linear differential equation. Tokyo J. Math., v.5, No.1, p.23–26 (1982).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. A. Bolibruch
    • 1
  1. 1.Steklov Mathematical Institute of Academy of Sciences of the USSRMoscowUSSR

Personalised recommendations