The problem of realization of homology classes from Poincare up to the present

  • Yu. B. Rudyak
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1520)


Vector Bundle Normal Bundle Homotopy Type Closed Manifold Homology Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eilenberg S. Problems in Topology.-Ann. Math., 1949, 50, p.246–260.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Thom R. Quelques propriétés globales des variétés différentiables.-Comm. Math. Helv., 1954, 28, p.17–86.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Husemoller D. Fibre bundles.-New York, McGraw-Hill, 1966.CrossRefzbMATHGoogle Scholar
  4. 4.
    Switzer R. Algebraic topology — homotopy and homology.-Berlin-Heidelberg-New York, Springer-Verlag, 1975.CrossRefzbMATHGoogle Scholar
  5. 5.
    Borisovich Yu.G. et al. Introduction to topology. Moscow, "Mir", 1985.Google Scholar
  6. 6.
    Mosher R., Tangora M. Cohomology operations-New York, Harper and Row, 1968.zbMATHGoogle Scholar
  7. 7.
    Cartan H. Séminaire H. Cartan 1954–1955 and 1959–1960, Paris.Google Scholar
  8. 8.
    Conner P., Floyd E. Differentiable periodic maps.-Berlin-Heidelberg-New York, Springer-Verlag, 1964.CrossRefzbMATHGoogle Scholar
  9. 9.
    Stong R. Notes on cobordism theory.-Princeton, Princeton Univ. Press, 1968.zbMATHGoogle Scholar
  10. 10.
    Baas N. On the bordism theory of manifolds with singularities.-Math. Scand., 1973, 33, p.279–302.MathSciNetzbMATHGoogle Scholar
  11. 11.
    Rudyak Yu.B. On realization of homological classes by PL-manifolds with singularities.-Matematicheskie zametki, 1987, vol.41, N 5, p.741–749 (in Russian, there exists an English translation).MathSciNetGoogle Scholar
  12. 12.
    Dubrovin B., Fomenko A., Novikov S. Modern geometry — Methods and applications. Part II. The geometry and topology of manifolds, Berlin-Heidelberg-New York-Tokyo, Springer-Verlag, 1985.zbMATHGoogle Scholar
  13. 13.
    May J.P. E-ring spaces and E-ring spectra. Lect. Notes in Math., 577. Berlin-Heidelberg-New York, Springer-Verlag, 1977.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Yu. B. Rudyak
    • 1
  1. 1.Department of MathematicsMoscow Institute of Civil EngineersMoscowUSSR

Personalised recommendations