On some problems of computational geometry and topology

  • O. R. Musin
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1520)


Vector Field Short Path Singular Point Computational Geometry Negative Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aho A.V., Hopcroft J.E., Ullman J.D. The design and analysis of computer algorithms, Addison-Wesley, Reading, Massachusetts, 1974.zbMATHGoogle Scholar
  2. 2.
    Vasilenko V.A. Splines. Theory, algorithms, programs. Novosibirsk, 1983.Google Scholar
  3. 3.
    Giloi W. Interactive computer graphics — data structures, algorithms, languages, Prentice-Hall, 1978.Google Scholar
  4. 4.
    Gromoll D., Klingenberg W., Meyer W. Riemannsche Geometrie im Grossen. Springer-Verlag, 1968.Google Scholar
  5. 5.
    Dijkstra E.W. A note on two-problems in connection with graphs / Numer. Math.-1959-N 1, p.269–271.Google Scholar
  6. 6.
    Douglas D. Experiments to locate ridges and channels to create a new type of digital elevation model / Cartographica-1986-V.23, N 4, p.279–303.CrossRefGoogle Scholar
  7. 7.
    Dubrovin B.A., Novikov S.P., Fomenko A.T. Modern Geometry. Moscow, 1979.Google Scholar
  8. 8.
    Zav'yalov Yu.S., Leus V.A., Skorospelov V.A. Splines in engineering geometry. Moscow, 1985.Google Scholar
  9. 9.
    Kolmogorov A.N., Fomin S.V. Elements of function theory and functional analysis. Moscow, 1976.Google Scholar
  10. 10.
    Korneenko N.M. Efficient algorithms of combinatory computational geometry / Kibernetika i vychislitel'naya tekhnika. Vyp.4. Moscow, 1988, p.179–203.Google Scholar
  11. 11.
    Kornishin M.S., Paimushin V.N., Snegirev V.F. Computational geometry in problems of hull mechanics. Moscow, 1989.Google Scholar
  12. 12.
    Lee D.T., Preparata F.P. Computational geometry — A survey, IEEE Transactions on Computers, 1984, V.C.-33, No.12, p.1072–1101.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Milnor J.W. Topology from the differentiable viewpoint. Charlottesville, Virginia, 1965.Google Scholar
  14. 14.
    Mitchell J., Mount D., Papadimitriou C. The discrete geodesic problem / SIAM J. Comput.-1987-V.15, N 1, p.193–215.MathSciNetzbMATHGoogle Scholar
  15. 15.
    Musin O.R., Serbenyuk S.N. Digital models of "relief" of continuous and discrete geofields / Geographic data bank for thematic map-making. Moscow, 1987, p.156–170.Google Scholar
  16. 16.
    Musin O.R. Partition of unity and interpolation of functions / VII All-Union seminar "Theoretical fundamental and construction of numerical algorithms for the solution of problems of mathematical physics". Abstracts. Kemerovo, 1988, p.86–87.Google Scholar
  17. 17.
    Musin O.R. Shortest paths on piece-wise linear manifolds / IX All-Union geometric conference. Abstracts. Kishinev, 1988, p.221–222.Google Scholar
  18. 18.
    Pavlidis T. Algorithms for graphics and image processing. Computer Science Press, 1982.Google Scholar
  19. 19.
    Preparata F.P., Shamos M.I. Computational geometry. An introduction. Springer-Verlag, 1985.Google Scholar
  20. 20.
    Sharir M., Schorr A. On shortest paths in polyhedral spaces / SIAM J. Comput.-1986-V.15, N 1, p.193–215.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Starodetko E.A. Elements of computational geometry. Minsk, 1986.Google Scholar
  22. 22.
    Foley J.D., van Dam A. Fundamental of interactive computer graphics, Addison-Wesley, Reading, Massachusetts, 1982.Google Scholar
  23. 23.
    Faux I.D., Pratt M.J. Computational geometry for design and manufacture / Ellis Horwood Ltd., 1979.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • O. R. Musin
    • 1
  1. 1.Department of GeographyMoscow State UniversityMoscowUSSR

Personalised recommendations