Duality in stable spencer cohomologies

  • V. V. Lychagin
  • L. V. Zil'bergleit
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1520)

Keywords

Vector Bundle Commutative Diagram Duality Theorem Dual Operator Dual Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spencer D.C. Overdetermined systems of linear partial differential equations-Bull. of the Amer. Math. Soc., 1969, 75: 2, p.179–239.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Quillen D.G. Formal properties of overdetermined systems of linear partial differential equations, Thesis, Harvard University, Cambridge, Massachusetts, 1964.MATHGoogle Scholar
  3. 3.
    Zil'bergleit L.V., Lychagin V.V. Spencer cohomologies of differential equations. In: Lect. Notes in Math., 1990, vol. 1453, p.121–136.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Goldschmidt H. Duality theorems in deformation theory, Transactions of the Amer. Math. Soc., 1985, v.292, N 1, p.1–50.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Fischer H.R., Williams F.L. Complex-foliated structures. I. Cohomology of the Dolbeaut-Kostant complexes, Transactions of the Amer. Math. Soc., 1979, v.252, p.163–195.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • V. V. Lychagin
    • 1
  • L. V. Zil'bergleit
    • 1
  1. 1.All-Union Correspondence Institute of Civil EngineeringMoscowUSSR

Personalised recommendations