Skip to main content

Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform

  • Medical Imaging Techniques
  • Conference paper
  • First Online:
Mathematical Methods in Tomography

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1497))

Abstract

Either for medical imaging or for non destructive testing, X-ray provides a very accurate mean to investigate internal structures. The object is described by a 3D map f of the local density. The use of a 2D X-ray detector like an image intensifier in front of the ponctual X-ray source defines a cone beam geometry. When the source moves along a curve, the acquisition measurements are modelized by the cone beam X-ray transform of the function f. This same model can be applied to emission tomography when cone beam collimators are used.

The aim of the 3D reconstruction is to recover the original function f. We have established an exact formula between the cone beam X-ray transform and the first derivative of the 3D Radon transform. We propose to use the planes as information vectors to achieve the rebinning from the coordinates system linked to the cone beam geometry, to the spherical coordinates system of the Radon domain. Then the reconstruction diagram is to compute and to invert the first derivative of the 3D Radon transform.

In this publication, we describe the mathematical framework of this reconstruction diagram. We emphasize the special case of the circular acquisition trajectory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • CAQUINEAU C., AMANS J.L. (1990a). “A processor architecture for the image and volume reconstruction”. ICASSP 1990, Session M1, M1.3, 1849–1852.

    Google Scholar 

  • CAQUINEAU C. (1990b). Architecture de processeurs pour la reconstruction d'images et de volumes à partir de projections. Thèse de doctorat. Université de Technologie de Compiègne.

    Google Scholar 

  • FELDKAMP L.A., DAVIS L.C., KRESS J.W. (1984). “Practical cone-beam algorithm”. J. Opt. Soc. Am., 1 (6), 612–619.

    Article  Google Scholar 

  • FINCH D.V., SOLMON D.C. (1980). “Stability and consistency for the divergent beam X-ray transform” in HERMAN G.T., NATTERER F., Mathematical Aspects of Computerized Tomography, 100–111, Springer-Verlag.

    Google Scholar 

  • FINCH D.V., SOLMON D.C. (1983). “A characterization of the range of the divergent beam X-ray transform”. SIAM J. Math. Anal., 14 (4), 767–771.

    Article  Google Scholar 

  • FINCH D.V. (1985). “Cone beam reconstruction with sources on a curve”. SIAM J. Appl. Math., 45 (4), 665–673.

    Article  Google Scholar 

  • GRANGEAT P. (1984). “Theoretical background of the cone-beam reconstruction algorithm”. Private communication with D. FINCH and D. SOLMON, published in GRANGEAT P. (1987). Analyse d'un Système d'Imagerie 3D par Reconstruction à partir de Radiographies X en Géométrie Conique. Thèse de doctorat. Ecole Nationale Supérieure des Télécommunications.

    Google Scholar 

  • GRANGEAT P. (1985). “3D reconstruction for diverging X-ray beams”. Computer Assisted Radiology (Berlin), CAR'85, 59–64, Springer-Verlag.

    Google Scholar 

  • GRANGEAT P. (1986a). “Description of a 3D reconstruction algorithm for diverging X-ray beams”. Biostereometrics 85, A.M. Coblentz, R.E. Heron ed, proc. SPIE-602, 92–108.

    Google Scholar 

  • GRANGEAT P. (1986b). “Voludensitométrie: optimisation du calcul de la transformée de Radon 3D à partir de radiographies X en géométrie conique”, Deuxième Colloque Image (Nice), CESTA, 512–516.

    Google Scholar 

  • GRANGEAT P. (1986c). “An analysis of the divergent beam X-ray transform based on the 3D Radon transform”. Communication at the siminar organized by HERMAN G.T. and NATTERER F. at the Mathematisches Forschungsinstitut Oberwolfach: Theory and Application of Radon transforms.

    Google Scholar 

  • GRANGEAT P. (1987a). “Procédé et dispositif d'imagerie tridimensionnelle à partir de mesures bidimensionnelles de l'atténuation”. French patent no 8777 07134. European patent (1988) no 88 401234.5, publication no EP 0292 402 A1.

    Google Scholar 

  • GRANGEAT P. (1987b). Analyse d'un Système d'Imagerie 3D par Reconstruction à partir de Radiographies X en Géométrie Conique. Thèse de doctorat. Ecole Nationale Supérieure des Télécommunications.

    Google Scholar 

  • GRANGEAT P. (1989). TRIDIMOS: Imagerie 3D de la minéralisation des vertèbres lombaires. Rapport final contrat CNES-LETI no 853/CNES/89/5849/00 (référence CEA: no GR 771.576).

    Google Scholar 

  • GRANGEAT P., HATCHADOURIAN G., LE MASSON P., SIRE P. (1990a). Logiciel Radon: Notice descriptive des algorithmes et des programmes. Note technique LETI no 1546.

    Google Scholar 

  • GRANGEAT P., LE MASSON P., MELENNEC P., SIRE P. (1990b). “3D cone beam reconstruction”. Communication at the seminar organized by HERMAN G.T., LOUIS A.K., NATTERER F., at the Matematisches Forschungsinstitut Oberwolfach: Mathematical Methods in Tomography.

    Google Scholar 

  • GRANGEAT P. (1990c). “Reconstruire les structures tridimensionnelles internes de l'organisme humain”. Submitted to Le Courrier du CNRS.

    Google Scholar 

  • GULLBERG G.T., ZENG G.L., CHRISTIAN P.E., TSUI B.M.W., MORGAN H.T. (1989). “Single photon emission computed tomography of the heart using cone beam geometry and non circular detector rotation”. In Information Processing in Medical Imaging, XI th IPMI International conference, Berkeley, CA.

    Google Scholar 

  • HAMAKER C., SMITH K.T., SOLMON D.C., WAGNER S.L. (1980). “The divergent beam X-ray transform”. Rocky Mount. J. of Math., 10 (1), 253–283.

    Article  Google Scholar 

  • JACQUET I. (1988). Reconstruction d'Image 3D par l'Algorithme Eventail Généralisé. Mémoire de Diplôme d'Ingénieur. Conservatoire National des Arts et Métiers.

    Google Scholar 

  • JASZCZAK R.J., GREER K.L., COLEMAN R.E. (1988). “SPECT using a specially designed cone beam collimator”. J. Nucl. Med., 29, 1398–1405.

    CAS  PubMed  Google Scholar 

  • JOSEPH P.M. (1982). “An improved algorithm for reprojecting rays through pixel images”. IEEE Trans. on Med. Imag., MI-1 (3), 192–196.

    Article  Google Scholar 

  • KIRILLOV A.A. (1961). “On a problem of I.M. Gel' fand”. Soviet Math. Dokl., 2, 268–269.

    Google Scholar 

  • KUDO H., SAITO T. (1989a). “3-D tomographic image reconstruction from incomplete cone beam projections”. In Proc. Topical Meeting OSA, Signal Recovery and Synthesis, Cape Code, USA, 170–173.

    Google Scholar 

  • KUDO H., SAITO T. (1989b). “Feasible cone beam scanning methods for exact 3-D tomographic image reconstruction”. In Proc. Topical Meeting OSA, Signal Recovery and Synthesis, Cape Code, USA, 174–177.

    Google Scholar 

  • LOUIS A.K. (1983). “Approximate inversion of the 3D Radon transform”. Math. Meth. in the Appl. Sci., 5, 176–185.

    Article  Google Scholar 

  • MANGLOS S.H., BASSANO D.A., DUXBURY C.E., CAPONE R.B. (1990). “Attenuation maps for SPECT determined using cone beam transmission computed tomography”. IEEE Trans. on Nucl. Sci., NS-37 (2), 600–608.

    Article  Google Scholar 

  • MARR R.B., CHEN C., LAUTERBUR P.C. (1980). “On two approaches to 3D reconstruction in NMR zeugmatography” in HERMAN G.T. and NATTERER F., Mathematical Aspects of Computerized Tomography, 225–240, Springer-Verlag.

    Google Scholar 

  • MINERBO G.N. (1979). “Convolution reconstruction from cone-beam projection data”. IEEE Trans. Nucl. Sci., NS-26 (2), 2682–2684.

    Article  Google Scholar 

  • MORTON E.J., WEBB S., BATEMAN J.E., CLARKE L.J., SHELTON C.G. (1990). “Three-dimensional X-ray microtomography for medical and biological applications”. Phys. Med. Biol., 35 (7), 805–820.

    Article  CAS  PubMed  Google Scholar 

  • NATTERER F. (1986). The Mathematics of Computerized Tomography. Wiley/Teubner.

    Google Scholar 

  • RIZO Ph., GRANGEAT P. (1989). “Development of a 3D cone beam tomographic system for NDT of ceramics”. In Topical Proceedings of the ASNT: Industrial Computerized Tomography, Seattle, July 25–27, 24–28.

    Google Scholar 

  • RIZO Ph., ELLINGSON W.A. (1990a). “An initial comparison between two 3D X-ray CT algorithms for characterizing ceramic materials”. Proc. of the conference on Non Destructive Evaluation of Modern Ceramics, Columbus, Ohio, July 9–12.

    Google Scholar 

  • RIZO Ph., GRANGEAT P., SIRE P., LE MASSON P., MELENNEC P. (1990b). “Comparison of two 3D cone beam reconstruction algorithm with a circular source trajectory”. Submitted to J. Opt. Soc. Am.

    Google Scholar 

  • RIZO Ph., GRANGEAT P., SIRE P., LE MASSON P., DELAGENIERE S. (1990c). “Cone beam 3D reconstruction with a double circular trajectory”. Communication at the 1990 Fall Meeting of the Material Research Society, Boston.

    Google Scholar 

  • ROBB R.A. (1985). “X-ray Computed Tomography: Advanced Systems in Biomedical Research” in ROBB R.A. (1985), Three Dimensional Biomedical Imaging, CRC Press, Volume I, Chapter 5, 107–164.

    Google Scholar 

  • SAINT-FELIX D., TROUSSET Y., PICARD C., ROUGEE A. (1990). “3D reconstruction of high contrast objects using a multi-scale detection/estimation scheme” in HÖHNE K.H., FUCHS H., PIZER S., 3D Imaging in Medicine: Algorithms, Systems, Applications, NATO ASI Series, Springer-Verlag, Series F, Vol. 60, 147–158.

    Google Scholar 

  • SIRE P., GRANGEAT P., LE MASSON P., MELENNEC P., RIZO Ph. (1990). “NDT applications of the 3D Radon transform algorithm for cone beam reconstruction”. Communication at the 1990 Fall Meeting of the Material Research Society, Boston.

    Google Scholar 

  • SMITH B.D. (1985). “Image reconstruction from cone-beam projections: necessary and sufficient conditions and reconstruction methods”. IEEE Trans. on Med. Imag., MI-4 (1) 14–25

    Article  Google Scholar 

  • SMITH B.D. (1987). Computer-aided tomographic imaging from cone-beam data. Ph. D. dissertation. University of Rhode Island.

    Google Scholar 

  • SMITH B.D. (1990). “Cone-beam tomography: recent advances and a tutorial review”. Optical Engineering, 29 (5), 525–534.

    Article  Google Scholar 

  • TUY H.K. (1983). “An inversion formula for cone-beam reconstruction”. SIAM J. Appl. Math., 43 (3), 546–552.

    Article  Google Scholar 

  • VICKERS D., COX W., Mc CROSKEY W., KOHRS B., ZAHN R., CARLSON R. (1989). “A revolutionary approach to industrial CT using cone-beam reconstruction”. In Topical Proceedings of the ASNT: Industrial Computerized Tomography, Seattle, July 25–27, 39–45.

    Google Scholar 

  • WEBB S., SUTCLIFFE J., BURKINSHAWL, HORSMAN A. (1987). “Tomographic reconstruction from experimentaly obtained cone-beam projections”. IEEE Trans. on Med. Imag., MI-6 (1), 67–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grangeat, P. (1991). Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform. In: Herman, G.T., Louis, A.K., Natterer, F. (eds) Mathematical Methods in Tomography. Lecture Notes in Mathematics, vol 1497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084509

Download citation

  • DOI: https://doi.org/10.1007/BFb0084509

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-54970-3

  • Online ISBN: 978-3-540-46615-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics