Skip to main content

Some applications of quasi-boundedness for excessive measures

  • Conference paper
  • First Online:
Séminaire de Probabilités XXVI

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 1526))

  • 508 Accesses

Abstract

Let ξ and m be excessive measures for a right Markov process X and let Q ξ and Q m be the associated stationary Kuznetsov processes. We show that if ξ and m are harmonic, then Q ξ « Q m if and only if ξ is quasi-bounded by m in the sense that ξ=Σkξk where each term in the sum is an excessive measure dominated by m. This result allows us to describe the Lebesgue decomposition of Q ξ relative to Q m and to give an explicit formula for the Radon-Nikodym derivative dQ ξ /dQ m in case Q ξ « Q m . As a second application of quasi-boundedness for excessive measures, we obtain a general form of a theorem of Ü. Kuran, in which regularity for the Dirichlet problem is characterized by the quasi-boundedness of a suitable excessive measure.

The research of both authors was supported, in part, by NSF Grant DMS 91-01675.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Airault, H. Föllmer: Relative densities of semimartingales. Inventiones Math. 27 (1974) 299–327.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Arsove, H. Leutwiler: Quasi-bounded and singular functions. Trans. Am. Math. Soc. 189 (1974) 275–302.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Arsove, H. Leutwiler: Algebraic potential theory. Memoirs of the A.M.S. 226, Providence, 1980.

    Google Scholar 

  4. J. Azéma: Théorie générale des processus et retournement du temps. Ann. Sci. École Norm. Sup. 6 (1973) 459–519.

    MATH  Google Scholar 

  5. J. Azéma, Th. Jeulin: Précisions sur la mesure de Föllmer. Ann. Inst. Henri Poincaré 12 (1976) 257–283.

    MATH  Google Scholar 

  6. J. L. Doob: Classical Potential Theory and Its Probabilistic Counterpart. Springer, Berlin, 1984.

    Book  MATH  Google Scholar 

  7. E. B. Dynkin: Minimal excessive measures and functions. Trans. Amer. Math. Soc. 258 (1980) 217–244.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. J. Fitzsimmons: Homogeneous random measures and a weak order for the excessive measures of a Markov process. Trans. Am. Math. Soc. 303 (1987) 431–478.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. J. Fitzsimmons, R. K. Getoor: A fine domination principle for the excessive measures of a Markov process. Math. Zeit. 207 (1991) 137–151.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. J. Fitzsimmons, R. K. Getoor: Riesz decompositions and subtractivity for excessive measures. To appear in Potential Analysis.

    Google Scholar 

  11. P. J. Fitzsimmons, B. Maisonneuve: Excessive measures and Markov processes with random birth and death. Prob. Theory Rel. Fields 82 (1986) 319–336.

    Article  MathSciNet  MATH  Google Scholar 

  12. H. Föllmer: The exit measure of a supermartingale. Z. Warscheinlichkeitstheorie verw. Geb. 21 (1972) 154–166.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. K. Getoor: Killing a Markov process under a stationary measure involves creation. Ann. Probab. 16 (1988) 564–585.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. K. Getoor: Excessive Measures, Birkhäuser, Boston, 1990.

    Book  MATH  Google Scholar 

  15. R.K. Getoor, J. Glover: Markov processes with identical excessive measures. Math. Z. 285 (1984) 107–132.

    MathSciNet  MATH  Google Scholar 

  16. R.K. Getoor, J. Glover: Riesz decompositions in Markov process theory. Trans. Amer. Math. Soc. 184 (1983) 287–300.

    MathSciNet  MATH  Google Scholar 

  17. Ü. Kuran: A new criterion of Dirichlet regularity via the quasi-boundedness of the fundamental superharmonic function. J. London Math. Soc. (2) 19 (1979) 301–311.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. E. Kuznetsov: Construction of Markov processes with random times of birth and death. Theory Probab. Appl. 18 (1974) 571–575.

    Article  MATH  Google Scholar 

  19. M. Parreau: Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann. Ann. Inst. Fourier Grenoble, 3 (1951) 103–197.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jacques Azéma Marc Yor Paul André Meyer

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag

About this paper

Cite this paper

Fitzsimmons, P.J., Getoor, R.K. (1992). Some applications of quasi-boundedness for excessive measures. In: Azéma, J., Yor, M., Meyer, P.A. (eds) Séminaire de Probabilités XXVI. Lecture Notes in Mathematics, vol 1526. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0084338

Download citation

  • DOI: https://doi.org/10.1007/BFb0084338

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56021-0

  • Online ISBN: 978-3-540-47342-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics