Advertisement

Moyennes des fonctions sous-analytiques, densite, cone tangent et tranches

  • K. Kurdyka
  • J. B. Poly
  • G. Raby
Conference paper
  • 321 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1420)

Keywords

Cone Tangent Geometric Measure Theory Lelong Number Nous Renvoyons Voisinage Ouvert 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    E. BIERSTONE, P. MILMAN. Semi-analytic and sub-analytic sets. Publication IHES, no67 (1988) 5–42.Google Scholar
  2. [2]
    J.P. DEMAILLY. Nombres de Lelong généralisés, théorèmes d'intégralité et d'analyticité. Acta Math. 159 (1987) 153–169.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Z. DENKOWSKA, S. LOJASIEWICZ, J. STASICA. Sur le théorème du complémentaire pour les ensembles sous-analytiques. Bull. Acad. Sci., Pol. XXVII, no7–8 (1979) 537–539Google Scholar
  4. [4]
    Z. DENKOWSKA, S. LOJASIEWICZ, J. STASICA. Certaines propriétés élémentaires des ensembles sous-analytiques. Ibid 529–536.Google Scholar
  5. [5]
    Z. DENKOWSKA, K. WACHTA. Sur la sous-analyticité de l'application tangente. Bull. Acad. Sci. Pol. XXX, no7–8 (1982) 329–331.Google Scholar
  6. [6]
    H. FEDERER. Geometric measure theory. Springer-Verlag, New-York (1969).zbMATHGoogle Scholar
  7. [7]
    A.M. GABRIELOV. Projections of semi-analytic sets. Funct. Ana. Appl. 2 (1968) 282–291.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    H. HIRONAKA. Sub-analytic sets, Number Theory, Algebraic Geometry and Commutative Algebra. Kinokuniya, Tokyo (1973) 453–493.Google Scholar
  9. [9]
    K. KURDYKA. Points réguliers d'un sous-analytique. Annales de l'Institut Fourier no38 (1988).Google Scholar
  10. [10]
    P. LELONG. Intégration sur un ensemble analytique complexe. Bull. Soc. Math. France 85 (1957) 239–262.MathSciNetzbMATHGoogle Scholar
  11. [11]
    W. PAWLUCKI. Quasi-regular boundary and Stokes formula for a sub-analytic leaf. Lecture Notes in Math. no1165.Google Scholar
  12. [12]
    W. PAWLUCKI. Le théorème de Puiseux pour une application sous-analytique. Bull. Pol. Acad. Sci. (Math), Vol. 32, no9–10 (1984) 555–560.MathSciNetzbMATHGoogle Scholar
  13. [13]
    J.B. POLY. Formile des résidus et intersection des chaînes sous-analytiques. Thèse, Poitiers (1974).Google Scholar
  14. [14]
    K. KURDYKA, G. RABY. Densité et cône tangent à un sous-analytique. C.R. Acad. Sci. Paris, 307 (1988) 23–25.MathSciNetzbMATHGoogle Scholar
  15. [15]
    J. STASICA. Whitney property of sub-analytic sets. Zeszyty Naukowe UJ, Prace Mat. Zesz 23 DCXXIII (1982) 211–221.Google Scholar
  16. [16]
    M. TAMM. Sub-analytic sets in the calculus of variations. Acta Math. 146 (1981) 167–199.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    P. THIE. The Lelong number of a point of a complex analytic set. Math. Annalen 172 (1967) 269–312.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    J.L. VERDIER. Stratifications de Whitney et théorème de Bertini-Sard. Inventiones Math. 36 (1976) 295–312.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    H. WHITNEY. Tangents to analytic variety. Ann. Math. (2), 81 (1965) 496–549.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • K. Kurdyka
    • 1
  • J. B. Poly
    • 2
  • G. Raby
    • 2
  1. 1.Institute of MathematicsJagellonian UniversityKrakowPoland
  2. 2.Laboratoire de MathématiquesUniversité de PoitiersPoitiers CedexFrance

Personalised recommendations