On vector bundles and real algebraic morphisms

  • J. Bochnak
  • W. Kucharz
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1420)


Vector Bundle Regular Mapping Homology Class Inclusion Mapping Zariski Open Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benedetti, R. and Tognoli, A.: On real algebraic vector bundles. Bull. Sc. Math. 104, 89–112 (1980)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bochnak, J., Coste, M. and Roy, M.F.: Géométrie Algébrique Réelle. Ergebnisse der Math. Vol. 12, Springer 1987.Google Scholar
  3. 3.
    Bochnak, J. and Kucharz, W.: On real algebraic morphisms into even-dimensional spheres. Ann. of Math. 128, 415–433 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bochnak, J., Buchner, M. and Kucharz, W.: Vector bundles over real algebraic varieties. K-Theory Journal (1988).Google Scholar
  5. 5.
    Bochnak, J. and Kucharz, W.: Algebraic models of smooth manifolds. Invent. Math. (1989)Google Scholar
  6. 6.
    Borel, A. and Haefliger, A.: La classe d'homologie fondamentale d'un espace analytique. Bull. Sc. Math. France 89, 461–513 (1961)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Evans, E.G.Jr.: Projective modules as fibre bundles. Proc. Am. Math. Soc. 27, 623–626 (1971)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fossum, R.: Vector bundles over spheres are algebraic. Invent. Math. 8, 222–225 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hironaka, H.: Resolution of singularities of an algebraic variety over a field of characteristic zero. Ann. of Math. 79, 109–326 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hu, S.T.: Homotopy Theory. Academic Press, New York and London 1959zbMATHGoogle Scholar
  11. 11.
    Husemoller, D.: Fibre bundles. Berlin, Heidelberg, New York, Springer 1975zbMATHGoogle Scholar
  12. 12.
    Moishezon, B.G.: Algebraic homology classes on algebraic varieties. Math. USSR Izv.1, 209–251 (1967)CrossRefzbMATHGoogle Scholar
  13. 13.
    Swan, R.G.: Topological examples of projective modules. Trans. Am. Math. Soc. 230, 201–234 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Swan, R.G.: K-theory of quadric hypersurfaces. Ann. of Math. 122, 113–153 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. Bochnak
    • 1
  • W. Kucharz
    • 2
  1. 1.Department of MathematicsVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Department of Mathematics and StatisticsUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations