Advertisement

Local resolution of singularities

  • Edward Bierstone
  • Pierre D. Milman
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1420)

Keywords

Standard Basis Local Coordinate System Finite Sequence Normal Crossing Coherent Sheaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    S.S. Abhyankar, Weighted expansions for canonical desingularization, Lecture Notes in Math. No. 910, Springer, Berlin-Heidelberg-New York, 1982.zbMATHGoogle Scholar
  2. 2.
    J.M. Aroca, H. Hironaka and J.L. Vicente, The theory of the maximal contact, Mem. Mat. Inst. Jorge Juan No. 29, Consejo Superior de Investigaciones Cientificas, Madrid, 1975.zbMATHGoogle Scholar
  3. 3.
    J.M. Aroca, H. Hironaka and J.L. Vicente, Desingularization theorems, Mem. Mat. Inst. Jorge Juan No. 30, Consejo Superior de Investigaciones Cientificas, Madrid, 1977.zbMATHGoogle Scholar
  4. 4.
    B.M. Bennet, On the characteristic functions of a local ring, Ann. of Math. (2) 91 (1970), 25–87.MathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Bierstone and P.D. Milman, Relations among analytic functions I, Ann. Inst. Fourier (Grenoble) 37, 1 (1987), 187–239.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    E. Bierstone and P.D. Milman, Ideals of holomorphic functions with C boundary values on a pseudoconvex domain, Trans. Amer. Math. Soc. 304 (1987), 323–342.MathSciNetzbMATHGoogle Scholar
  7. 7.
    E. Bierstone and P.D. Milman, Semianalytic and subanalytic sets, Publ. Math. I.H.E.S. 67 (1988), 5–42.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    E. Bierstone and P.D. Milman, Uniformization of analytic spaces (to appear).Google Scholar
  9. 9.
    H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math. (2) 79 (1964), 109–326.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    H. Hironaka, Certain numerical characters of singularities, J. Math. Kyoto Univ. 10 (1970), 151–187.MathSciNetzbMATHGoogle Scholar
  11. 11.
    H. Hironaka, Introduction to the theory of infinitely near singular points, Mem. Mat. Inst. Jorge Juan No. 28, Consejo Superior de Investigaciones Cientificas, Madrid, 1974.zbMATHGoogle Scholar
  12. 12.
    H. Hironaka, Idealistic exponents of singularity, Algebraic Geometry (J.J. Sylvester Sympos., Johns Hopkins Univ., Baltimore, Md., 1976), pp. 52–125, Johns Hopkins Univ. Press, Baltimore, Md., 1977.Google Scholar
  13. 13.
    M. Spivakovsky, A solution to Hironaka's polyhedra game, Arithmetic and geometry, Vol. II, pp. 419–432, Progr. Math. No. 36, Birkhäuser, Boston, Mass., 1983.Google Scholar
  14. 14.
    B. Youssin, Newton polyhedra without coordinates (to appear).Google Scholar
  15. 15.
    B. Youssin, Newton polyhedra of ideals, Trans. Amer. Math. Soc. (to appear).Google Scholar
  16. 16.
    O. Zariski, Local uniformization on algebraic varieties, Ann. of Math. (2) 41 (1940), 852–896.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Edward Bierstone
    • 1
    • 2
  • Pierre D. Milman
    • 3
  1. 1.University of TorontoCanada
  2. 2.Inst. Hautes Études ScientifiquesCNRS, Université de Paris VIFrance
  3. 3.University of TorontoCanada

Personalised recommendations