Advertisement

Two bounds for the number of connected components of a real algebraic set

  • Riccardo Benedetti
  • François Loeser
  • Jean-Jacques Risler
Conference paper
  • 324 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1420)

Keywords

General Position Complete Intersection Finite Family Newton Polyhedron Compact Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [M]
    Milnor J.: On the Betti numbers of real varieties, Proc. A.M.S. 15, 275–280 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [T]
    Thom R.: Sur l'homologie des variétés algébriques réelles, In Diff. Comb. Top. 255–265, Princeton University Press (1965).Google Scholar
  3. [F]
    Fary I.: Cohomologie des variétés algébriques, Ann. of Math., 65, 21–73 (1957).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [D-H]
    Danilov V.I., Hovansky A.G.: Newton polyhedra and an algorithm for computing Hodge-Deligne numbers, Math. USSR Izvestiya vol. 29 (1987), 279–298.CrossRefzbMATHGoogle Scholar
  5. [H1]
    Hovansky A.G.: Newton polyhedra and toric varieties, Funct. Anal. Appl. 13 (1977).Google Scholar
  6. [H2]
    Hovansky A.G.: Newton polyhedra and the genus of complete intersections, Funct. Anal. Appl. 12 (1978).Google Scholar
  7. [G-W-D]
    Gibson, Wirthmüller, du Plessis, Looijenga, Springer Lecture Notes 552 (1976).Google Scholar
  8. [Bor]
    Borel A.: Seminar on transformation groups, Ann. of Math. Studies 46 (1960).Google Scholar
  9. [D]
    Durfee A.H.: Neighbourhoods of algebraic sets, T.A.M.S. 276, 517–530 (1983).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Riccardo Benedetti
    • 1
  • François Loeser
    • 2
  • Jean-Jacques Risler
    • 3
  1. 1.Dipartimento di MatematicaUniversitá di PisaItaly
  2. 2.Centre de Mathématiques, École PolytechniquePalaiseau
  3. 3.Université Paris VI, E.N.S.Paris

Personalised recommendations