A note on the real spectrum of analytic functions on an analytic manifold of dimension one

  • C. Andradas
  • E. Becker
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1420)


Prime Ideal Maximal Ideal Valuation Ring Residue Field Real Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Alling, N.: "The valuation theory of meromorphic function fields over open Riemann surfaces" Acta Math. 110, 79–96 (1963).MathSciNetCrossRefzbMATHGoogle Scholar
  2. [A-B]
    Andradas,C. and Becker,E.: "On the stability index of a ring and its application to semialgebraic geometry". To appear in the proceedings of Delon-Dickman-Gondard seminar on Real Algebra.Google Scholar
  3. [A-B-R]
    Andradas, C.; Bröcker, L. and Ruiz, J.M.: "Minimal generation of basic open semianalytic sets". Invent. Math. 92, 409–430 (1988).MathSciNetCrossRefzbMATHGoogle Scholar
  4. [B-C-R]
    Bochnak,J.; Coste,M. and Roy,M.F.: Geometrie Algebrique Reelle. Ergeb. Math. 12, Springer-Verlag, 1987.Google Scholar
  5. [Bro]
    Bröcker, L.: "Zur Theorie der quadratischen Formen über formal reellen Körpern". Math. Ann. 210, 233–256 (1974).MathSciNetCrossRefGoogle Scholar
  6. [G-R]
    Gamboa,J.M. and Ruiz J.M.: "On rings of abstract semialgebraic functions" Preprint, 1989.Google Scholar
  7. [G-J]
    Gillman and Jerison: Rings of continuous functions. Van Nostrand, Princeton, 1960.CrossRefzbMATHGoogle Scholar
  8. [H]
    Hirsch,M.: Differential Topology. Springer Verlag 1976.Google Scholar
  9. [P]
    Prestel, A.:Einführung in die mathematische Logik und Modelltheorie. Vieweg Verlag. Braunschweig 1986.CrossRefzbMATHGoogle Scholar
  10. [P-R]
    Prestel,A. and Roquette,P.: Lectures on p-adic fields. Lect. Notes in Math. 1050, 1984.Google Scholar
  11. [Sch]
    Schülting, H-W.: "On real places of a field and their holomorphy ring". Comm. Alg. 10, 1239–1284, (1982).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • C. Andradas
    • 1
  • E. Becker
    • 2
  1. 1.Dpto. de Algebra Fac. de MatemáticasUniv. ComplutenseMadridSpain
  2. 2.Abteilung der Math.Universität DortmundDortmundGermany

Personalised recommendations