Advertisement

Diffraction effects in weakly nonlinear detonation waves

  • Rodolfo R. Rosales
Hyperbolic P.D.E. Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1402)

Abstract

In the limit of small heat release, large activation energy and weak nonlinearity, the propagation of detonation waves obeys a Geometrical Optics approximation. These equations develop caustic singularities, where the approximation fails. Here we present a derivation of a modified set of equations for weakly nonlinear detonation waves incorporating lateral diffraction effects. The modified set of equations does not fail at caustics.

Keywords

Wave Front Shock Front Detonation Wave Triple Point Geometrical Optic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Buchal, R. N. and Keller, J. B., “Boundary Layer Problems in Diffraction Theory,” Comm. Pure Appl. Math., vol. 13, pp. 85–114, 1960.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Choquet-Bruhat, Y., “Ondes Asymptotiques et Approchées pour des systèmes d'Équations aux Dérivées Partielles non Linéaires,” J. Math. Pures et Appl., vol. 48, pp. 117–158, 1969.MathSciNetzbMATHGoogle Scholar
  3. [3]
    Cole, J. D., “Modern Developments in Transonic Flow,” SIAM J. Appl. Math., vol. 29, pp. 763–787, 1975.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    Cramer, M. S. and Seebass, A. R., “Focusing of Weak Shock Waves at an Arête,” J. Fluid Mech., vol. 88, pp. 209–222, 1978.CrossRefzbMATHGoogle Scholar
  5. [5]
    Fickett, W. and Davis, W. C., Detonation, Univ. of California Press, Berkeley, 1979.Google Scholar
  6. [6]
    Hunter, J. K., “Transverse Diffraction of Nonlinear Waves and Singular Rays,” SIAM J. Appl. Math., vol. 48, pp. 1–37, 1988.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    Hunter, J. K. and Keller, J. B., “Weakly Nonlinear, High-frequency Waves,” Comm. Pure Appl. Math., vol. 36, pp. 547–569, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Hunter, J. and Keller, J. B., “Caustics of Nonlinear Waves,” Wave Motion, vol. 9, pp. 429–443, 1987.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Hunter, J. K., Majda, A. and Rosales, R., “Resonantly Interacting Weakly Nonlinear Hyperbolic Waves. II. Several Space Variables,” St. Appl. Math., vol. 75, pp. 187–226, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    Keller, J. B., “Rays, Waves and Asymptotics,” Bull. Am. Math. Soc., vol. 84, pp. 727–750, 1978.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    Kevorkian, J. and Cole, J. D., Perturbation Methods in Applied Mathematics, Springer-Verlag, New York, 1980.zbMATHGoogle Scholar
  12. [12]
    Ludwig, D., “Uniform Asymptotic Expansions at a Caustic,” Comm. Pure Appl. Math., vol. 19, pp. 215–250, 1966.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Majda, A. and Rosales, R., “Resonantly Interacting Weakly Nonlinear Hyperbolic Waves. I. A Single Space Variable,” St. Appl. Math., vol. 71, pp. 149–179, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    Rosales, R. R. and Majda, A., “Weakly Nonlinear Detonation Waves,” SIAM J. Appl. Math., vol. 43, pp. 1086–1118, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Sturtevant, B. and Kulkarny, V. A., “The Focusing of Weak Shock Waves,” J. Fluid Mech., vol. 73, pp. 651–671, 1976.CrossRefGoogle Scholar
  16. [16]
    Whitham, G. B., Linear and Nonlinear Waves, John Wiley and Sons, New York, 1974.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Rodolfo R. Rosales
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridge

Personalised recommendations