Review of flow simulations using lattice gases

  • D. d'Humières
  • P. Lallemand
  • Y. H. Qian
Numerical Analysis Main Applications
Part of the Lecture Notes in Mathematics book series (LNM, volume 1402)


Lattice gases are first defined as a new way to perform molecular dynamics calculations in a simplified manner but at large speeds thus allowing to consider enough particles to simulate real flows. Some results of the statistical analysis of lattice gases are summarized showing that their macroscopic behaviour follows closely that of real fluid flows at low Mach numbers. An example of a two-dimensional flow simulation using a simple lattice gas model is given. Finally new results are presented concerning one-dimensional shocks studied by numerical simulations for two-dimensional lattice gases, showing good agreement with theoretical analysis.


Molecular Dynamic Calculation Velocity Distribution Function Galilean Invariance Rest Particle Collision Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Boon J.P. and Yip S., Molecular Hydrodynamics, Mac Graw Hill, (1980).Google Scholar
  2. [2]
    Rapaport D.C. and Clementi F., Phys. Rev. Letters, 57, 695 (1986). Meiburg E., Phys. Fluids, 29, 3107 (1986). Koplik J., Banavar, J.R. and Willemsen J.F., Phys. Rev. Letters, 60, 1282, (1988). Rapaport D.C., Phys. Rev. Letters, 60, 2480 (1988).CrossRefGoogle Scholar
  3. [3]
    Broadwell J.C., Phys. Fluids, 7, 1243 (1964).CrossRefGoogle Scholar
  4. [4]
    Gatignol R., “Théorie Cinétique des Gaz à Répartition Discrète de Vitesses”, Lecture Notes in Physics, 36 (Springer, Berlin, 1975).zbMATHGoogle Scholar
  5. [5]
    Hardy J., Pomeau Y. and de Pazzis O., J. Math. Phys., 14,1746 (1973). Hardy J., de Pazzis O. and Pomeau Y., Phys. Rev., A 13,1949 (1976).CrossRefGoogle Scholar
  6. [6]
    Frisch U., Hasslacher B. and Pomeau Y., Phys. Rev. Lett., 56, 1505 (1986).CrossRefGoogle Scholar
  7. [7]
    d'Humières D., Lallemand P. and Frisch U., Europhys. Lett., 2, 291 (1986).CrossRefGoogle Scholar
  8. [8]
    Burges C. and Zaleski S., Complex Systems, 1, 31, (1987).MathSciNetGoogle Scholar
  9. [9]
    Clavin P., Lallemand P., Pomeau Y. and Searby G., J. Fluid Mech., 188, 437, (1988).CrossRefGoogle Scholar
  10. [10]
    Rivet J.P. and Frisch U., Comp. Rend. Acad. Sci. Paris II 302, 267, (1987).Google Scholar
  11. [11]
    Wolfram S., J. Stat. Phys., 45, 471, (1986).MathSciNetCrossRefGoogle Scholar
  12. [12]
    Frisch U., d'Humières D., Hasslacher B., Lallemand P., Pomeau Y. and Rivet J.P., Complex Systems, 1,649, (1987).MathSciNetGoogle Scholar
  13. [13]
    d'Humières D. and Lallemand P., Helvetica Physica Acta, 59, 1231, (1986).Google Scholar
  14. [14]
    Hénon M., Complex Systems, 1, 763, (1987).MathSciNetGoogle Scholar
  15. [15]
    Hénon M. to be published in Proceedings of the Conference “Discrete kinetic theory, lattice gas dynamics and foundations of hydrodynamics”, Torino, Sept. 1988.Google Scholar
  16. [16]
    d'Humières D. and Lallemand P., Complex Systems, 1, 1, 599, (1987).MathSciNetGoogle Scholar
  17. [17]
    Rivet J.P., Comp. Rend. Acad. Sci. Paris, II 305, 751, (1987). Rivet J.P., Hénon M., Frisch U. and d'Humières D., Europhys. Lett., 7, 231, (1988).MathSciNetGoogle Scholar
  18. [18]
    Kadanoff L., McNamara G. and Zanetti G., “Size-dependence of the shear-viscosity for a two-dimensional lattice gas”, preprint Univ. Chicago, (1987).Google Scholar
  19. [19]
    d'Humières D., Lallemand P. and Qian Y.H., Comp. Rend. Acad. Sci. Paris to be published (1988).Google Scholar
  20. [20]
    Glowinski R., Mantel B., Périaux J. and Tissier O. in Note on Numerical Fluid Mechanics, 9, Morgan K., Périaux J. and Thomasset F. editors (Vieweg and Sons) (1984).Google Scholar
  21. [21]
    Rothmann D.H. and Keller J.M., J. Stat. Phys., 52, 1119, (1988).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • D. d'Humières
    • 1
  • P. Lallemand
    • 1
  • Y. H. Qian
    • 1
  1. 1.Laboratoire de Physique Statistiqueassocié au CNRS et à l'Université Pierre et Marie Curie Ecole Normale SupérieureParis Cedex 05

Personalised recommendations