Advertisement

Self-homotopy equivalences and highly connected poincaré complexes

  • Kohhei Yamaguchi
Research Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1425)

Keywords

Homotopy Class Homotopy Type Homotopy Group Cohomology Ring Mapping Cone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.D. Barcus and M.G. Barratt: On the homotopy classification of a fixed map, Trans. Amer. Math. Soc., 88 (1958), 57–74.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    H. Ishimoto: On the structure of (n-2)-connected 2n dimensional π-manifolds, Publ. RIMS. Kyoto Univ., 5 (1969), 65–77.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    _____: On the classification of (n-2)-connected 2n-manifolds with torsion free homology groups, ibid., 9 (1973), 211–260.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    I.M. James: On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford, 5 (1954), 260–270.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    _____: Note on cup-products, Proc. Amer. Math. Soc., 8 (1957), 374–383.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    _____: On sphere bundles over spheres, Comment. Math. Helv., 35 (1961), 126–135.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    I.M. James and J.H.C. Whitehead: The homotopy theory of sphere bundles over spheres (I), Proc. London Math. Soc., 4 (1954), 196–218.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    _____: The homotopy theory of sphere bundles over spheres (II), ibid., 5 (1955), 148–166.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S. Oka: Groups of self-equivalences of certain complexes, Hiroshima Math. J., 2 (1972), 285–293.MathSciNetzbMATHGoogle Scholar
  10. [10]
    S. Oka, N. Sawashita and M. Sugawara: On the group of self-equivalences of a mapping cone, ibid., 4 (1974), 9–23.MathSciNetzbMATHGoogle Scholar
  11. [11]
    J.W. Rutter: The group of homotopy self-equivalence classes of CW complexes, Math. Proc. Camb. Phil. Soc., 93 (1983), 275–293.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    A.J. Sieradski: Twisted self-homotopy equivalences, Pacific J. Math., 34 (1970), 782–802.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    H. Toda: Composition methods in homotopy groups of spheres, Ann. Math. Studies, 49 (1962), Princeton Univ. Press.Google Scholar
  14. [14]
    C.T.C. Wall: Classification of (n-1)-connected 2n-manifolds, Ann. of Math., 75 (1962), 163–189.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    _____: Classification problem in differential topology V: On certain 6-manifolds, Inventiones Math., 1 (1966), 355–374.CrossRefzbMATHGoogle Scholar
  16. [16]
    _____: Poincaré complexes I, Ann. of Math., 86 (1967), 213–245.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    K. Yamaguchi: On the self-homotopy equivalences of the wedge of certain complexes, Kodai Math. J., 6 (1983), 346–375.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    _____: The group of self-homotopy equivalences of S2-bundles over S4, II; Applications, ibid., 10 (1987), 1–9.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A.V. Zubr: Classification of simply connected six dimensional spinor manifolds, Math. USSR. Izvestja, 9 (1975), 793–812.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Kohhei Yamaguchi
    • 1
  1. 1.Department of MathematicsThe University of Electro-CommunicationsTokyoJapan

Personalised recommendations