Equivariant self-homotopy equivalences of 2-stage G-spaces

  • Jesper Michael Møller
Research Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1425)


Spectral Sequence Short Exact Sequence Natural Transformation Congruence Class Homotopy Equivalence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.E. Bredon, Equivariant Cohomology Theories, Lecture Notes in Mathematics 34 (1967), Springer-Verlag, Berlin-New York.zbMATHGoogle Scholar
  2. 2.
    A.D. Elmendorf, Systems of Fixed Point Sets, Trans.Amer.Math.Soc 277 (1983), 275–284.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    D.H. Gottlieb, Covering transformations an universal fibration, Illinois J. Math 13 (1969), 432–43MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. Grothendieck, Sur quelques Points d'Algèbre Homologique, Tohoku Math. J. 9 (1957), 119–221.MathSciNetzbMATHGoogle Scholar
  5. 5.
    V.L. Hansen, Spaces of maps into Eilenberg-MacLane spaces, Canad. J. Math. XXXIII (1981), 782–785.CrossRefzbMATHGoogle Scholar
  6. 6.
    J. McCleary, User's Guide to Spectral Sequences, Mathematics Lecture Series 12 (1985), Publish or Perish, Wilmington.zbMATHGoogle Scholar
  7. 7.
    J.F. McClendon, Obstruction Theory in Fiber Spaces, Math. Z. 120 (1971), 1–17.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    S. MacLane, Homologie. Third Corrected Printing, Die Grundlehren der mathematischen Wissenschaften 114 (1975), Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  9. 9.
    K. Maruyama, A Remark on The Group of Self-homotopy Equivalences, Mem. Fac. Sci. Kyushu Univ.Ser. A 41 (1987), 81–84.MathSciNetzbMATHGoogle Scholar
  10. 10.
    J.M. Møller, Spaces of sections of Eilenberg-MacLane fibrations, Pacific J. Math 130 (1987), 171–186.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J.M. Møller, On Equivariant Function Spaces, Preprint (1987).Google Scholar
  12. 12.
    J.M.Møller, Homotopy Equivalences of Group Cohomology Spaces, Preprint (1988).Google Scholar
  13. 13.
    W. Shih, On the group ε(X) of homotopy equivalence maps, Bull. Amer. Math. Soc 492 (1964), 361–365.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    R.M. Switzer, Counting elements in homotopy sets, Math. Z. 178 (1981), 527–554.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    K. Tsukiyama, Self-homotopy-equivalences of a space with two non-vanishing homotopy groups, Proc. Amer. Math. Soc. 79 (1980), 134–138.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    G.W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics 61 (1978), Springer-Verlag, Berlin-Heidelberg-New York.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Jesper Michael Møller
    • 1
  1. 1.Matematisk InstitutKøbenhavns UniversitetKøbenhavn ØDenmark

Personalised recommendations