Weak equivalences and quasifibrations

  • J. P. May
Research Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1425)


Homotopy Group Homotopy Theory Weak Equivalence Homotopy Equivalence Fibre Homotopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Dold and R. K. Lashof. Principal quasifibrations and fibre homotopy equivalence of bundles. Ill. J. Math. 3(1959), 285–305.MathSciNetzbMATHGoogle Scholar
  2. 2.
    A. Dold and R. Thom. Quasifaserungen und unendliche symmetrische Produkte. Annals of Math. 67(1958), 239–281.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brayton Gray. Homotopy Theory. Academic Press. 1975.Google Scholar
  4. 4.
    K. A. Hardie. Quasifibrations and adjunction. Pacific J. Math. 35(1970), 389–397.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. P. May. Classifying Spaces and Fibrations. Memoirs Amer. Math. Soc. 155. 1975.Google Scholar
  6. 6.
    J. P. May. The dual Whitehead theorems. London Math. Soc. Lecture Note Series Vol 86, 1983, 46–54.MathSciNetzbMATHGoogle Scholar
  7. 7.
    D. Quillen. Higher algebraic K-theory I. Springer Lecture Notes in Mathematics Vol 341, 1973, 85–147.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    M. Sugawara. On a condition that a space is an H-space. Math. J. Okayama Univ. 6(1957), 109–129.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    G. W. Whitehead. Elements of Homotopy Theory. Springer. 1978.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • J. P. May
    • 1
  1. 1.Department of MathematicsUniversity of ChicagoChicago

Personalised recommendations