On the group ɛ(X×Y) and ɛBB(X×BY)

  • P. I. Booth
  • P. R. Heath
Research Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1425)


Exact Sequence Short Exact Sequence Homotopy Class Semidirect Product Homotopy Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AY]
    Ando Y., Yamaguchi K., On homotopy self-equivalences of the Product A × B. Proc. Japan Acad., 58 Ser. A No. 7 (1982) 323–325.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [B]
    Booth P.I., The section problem and the lifting problem, Math. Z. 121, (1971) 273–287.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [BBI]
    Booth, P.I., Brown R., Spaces of partial maps, fibred mapping spaces and the compact-open topology. Gen. Topology and its Applications. 8 (1978) 181–195.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [BBII]
    _____, On the application of fibred mapping spaces to exponential laws for bundles, ex-spaces and other categories of maps. Gen Topology and its Applications, 8 (1978) 165–179.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [BK]
    Berrick A.J., Kamps K.H. Comparison theorems in homotopy theory via operations on homotopy sets. Math. Nachr. 121 (1985) 25–32.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [Br]
    Brown R., Elements of modern topology. McGraw-Hill, Maidenhead, 1968.zbMATHGoogle Scholar
  7. [D]
    Dold A., Partitions of unity in the theory of fibrations. Annals of Math., Vol 78, No. 2, (1964) 223–255.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [H]
    Heath P.R., Homotopy equivalence of a cofibre-fibre composite. Can. J. Math., Vol. XXIV, No. 6, (1977), 1152–1156.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [HW]
    Hilton P.J., Wylie S., Homology theory, Cambridge University Press, 1960.Google Scholar
  10. [HLS]
    Hsiang W.C., Levine J., Szczarba R.H., On the normal bundle of a homotopy sphere embedded in Euclidean space, Topology Vol 3, 173–181. (1965).MathSciNetCrossRefzbMATHGoogle Scholar
  11. [K]
    Koh S.S., Note on the homotopy properties of the components of the mapping space XS p, Proc Amer. Math. Soc., 11 (1960), 896–904.MathSciNetzbMATHGoogle Scholar
  12. [M]
    May J.P. Simplicial objects in algebraic topology. Van Nostrand Co., Inc., Princeton, 1967.zbMATHGoogle Scholar
  13. [MB]
    MacLane S., Birkhoff G., Algebra. The MacMillan Company, New York 1967.zbMATHGoogle Scholar
  14. [N]
    Nomura Y., Homotopy equivalences in a principal fibre space. Math. Z. 92 (1966) 380–388.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [OSS]
    Oka S., Sawashita N., Sugawara M., On the group of self-equivalences of a mapping cone. Hiroshima Math. J. 4 (1974) 9–28.MathSciNetzbMATHGoogle Scholar
  16. [R]
    Rutter J. W. Review of [AY], Zentralblatt 537 (1985) review # 55010, p. 285.Google Scholar
  17. [S]
    Sawashita N., On the group of self-equivalences of the product of spheres, Hiroshima Math. J. 5 (1975) 69–86.MathSciNetzbMATHGoogle Scholar
  18. [Sp]
    Spanier E., Algebraic topology, McGraw-Hill, New York, 1966.zbMATHGoogle Scholar
  19. [St]
    Strøm A., Note on cofibrations, Math. Scand. 22 (1968), 11–14.MathSciNetzbMATHGoogle Scholar
  20. [T]
    Thom R., L'homologie des espaces fonctionnels, Colloque de topologie algébrique, Louvain 1956, 29–39. Georges Thone, Liège; Masson and Cie, Paris, 1957.Google Scholar
  21. [V]
    Vogt R., Convenient categories of topological spaces for homotopy theory, Arch. Math., 22, (1971) 545–555.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [W]
    Whitehead G.W., On products in homotopy groups, Annals of Math. 47 (1946) 460–475.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [Y]
    Yamanoshita T., On the spaces of self-homotopy equivalences of certain CW-complexes. J Math. Soc. Japan Vol 37, No 3, (1985) p. 455–470.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • P. I. Booth
    • 1
  • P. R. Heath
    • 1
  1. 1.Department of Mathematics and StatisticsMemorial University of NewfoundlandSt. John'sCanada

Personalised recommendations