Equivalent homotopy theories and groups of self-equivalences

  • Peter Booth
Research Papers
Part of the Lecture Notes in Mathematics book series (LNM, volume 1425)


Short Exact Sequence Homotopy Class Homotopy Type Hausdorff Space Homotopy Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Be.
    R. Bencivenga, On the groups of automorphisms of principal and fibre bundles, Ph.D. thesis, Memorial University of Newfoundland, March 1982.Google Scholar
  2. Bo1.
    P. Booth, Classifying spaces for a general theory of fibrations (to appear).Google Scholar
  3. Bo2.
    P. Booth, Maps between classifying spaces and the classification of fibrations (to appear).Google Scholar
  4. BB.
    P. Booth and R. Brown, On the application of fibred mapping spaces to exponential laws for bundles, ex-spaces and other categories of maps, Gen. Top. and its Applications 8 (1978) 165–179.MathSciNetCrossRefzbMATHGoogle Scholar
  5. BHP1.
    P. Booth, P. Heath and R. Piccinini, Fibre preserving maps and functional spaces, Lecture notes in Math. 673 (Springer-Verlag, Berlin, 1978) 158–167.zbMATHGoogle Scholar
  6. BHP2.
    P. Booth, P. Heath and R. Piccinini, Characterizing universal fibrations, Lecture notes in Math. 673 (Springer-Verlag, Berlin 1978) 168–184.zbMATHGoogle Scholar
  7. BHMP.
    P. Booth, P. Heath, C. Morgan, and R. Piccinini, H-spaces of self-equivalences of fibrations and bundles, Proc. Lond. Math. Soc. (3) 49 (1984) 111–127.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Bor.
    A. Borel, Topics in the homology theory of fibre bundles, Lecture notes in Math. 36, Springer-Verlag, Berlin 1967.zbMATHGoogle Scholar
  9. Do.
    A. Dold, Partitions of unity in the theory of fibrations, Ann. of Math. 78 (1963) 223–255.MathSciNetCrossRefzbMATHGoogle Scholar
  10. DDK.
    E. Dror, W.G. Dwyer and D.M. Kan, Equivariant maps which are self-homotopy equivalences, Proc. Amer. Math. Soc. 80 (1980) 670–672.MathSciNetCrossRefzbMATHGoogle Scholar
  11. DK.
    W.G. Dwyer and D.M. Kan, Reducing equivariant homotopy theory to the theory of fibrations, Contemporary Mathematics, Vol 37 (1985) 35–49.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Ful.
    M. Fuchs, Borel fibrations and G-spaces, Manuscripta Math. 58 (1987) 377–380.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Fu2.
    M. Fuchs, Equivariant maps up to homotopy and Borel spaces. Pub. Math. Univ. Aut. de Barcelona (1984) 79–102.Google Scholar
  14. Ja1.
    I.M. James, Ex-homotopy theory, Illinois J. Math. 15 (1971), 324–337.MathSciNetzbMATHGoogle Scholar
  15. Ja2.
    I.M. James, Alternative homotopy theories, L'Enseignement Mathématique, XXIII, fasc. 3–4 (1977) 221–237.MathSciNetzbMATHGoogle Scholar
  16. Ka(D).
    D. Kahn, Induced maps for Postnikov systems, Trans. Amer. Math. Soc. 107 (1963) 432–450.MathSciNetzbMATHGoogle Scholar
  17. Ka(P).
    P.J. Kahn, Some function spaces of CW-type Proc. Amer. Math. Soc. 90 (1984) 599–607.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Mac.
    S. MacLane, Categories for the working mathematician. Berlin: Springer-Verlag, Berlin, 1971.zbMATHGoogle Scholar
  19. May.
    J.P. May, Classifying spaces and fibrations, Memoirs Amer. Math. Soc. 155 (1975).Google Scholar
  20. Mi1.
    J. Milnor, Construction of universal bundles II, Ann. of Math. 63 (1956) 430–436.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Mi2.
    J. Milnor, On spaces having the homotopy type of a CW-complex. Trans. Amer. Math. Soc. 90 (1959) 272–280.MathSciNetzbMATHGoogle Scholar
  22. OT.
    H. Oshima and K. Tsukiyama, On the group of equivariant self equivalences of free actions, Publ. RIMS, Kyoto Univ. 22 (1986) 905–923.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Sc.
    R. Schön, Fibrations over a CWh-base, Proc. Amer. Math. Soc. 62 (1977) 165–166.MathSciNetCrossRefzbMATHGoogle Scholar
  24. SV.
    R. Schwaenzl and R.M. Vogt, Coherence in homotopy group actions, Transformation groups, Lecture notes in Math. 1217 (Springer-Verlag, Berlin, 1986) 364–390.Google Scholar
  25. Sh.
    W. Shih, On the group ɛ[X] of homotopy equivalence maps. Bull. Amer. Math. Soc. 70 (1964) 361–365.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Sp.
    E. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.zbMATHGoogle Scholar
  27. St.
    N. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967) 133–152.MathSciNetCrossRefzbMATHGoogle Scholar
  28. Th.
    R. Thom, L'homologie des espaces fonctionnels, Colloque. de Topologie Algébrique, Louvain (1956).Google Scholar
  29. Ts.
    K. Tsukiyama, Equivariant self equivalences of principal fibre bundles, Proc. Camb. Phil. Soc. 98 (1985) 87–92.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Va.
    K. Varadarajan, On fibrations and category, Math. Zeitschr. 88 (1965) 267–273.MathSciNetCrossRefzbMATHGoogle Scholar
  31. Vo.
    R.M. Vogt, Convenient categories of topological spaces for homotopy theory, Arch. Math. 22 (1971) 545–555.MathSciNetCrossRefzbMATHGoogle Scholar
  32. Wh.
    G.W. Whitehead, Elements of homotopy theory, Springer-Verlag, Berlin-Heidelberg-New York, (1978).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Peter Booth
    • 1
  1. 1.Memorial University of NewfoundlandSt. John'sCanada

Personalised recommendations