Advertisement

Number Theory pp 170-177 | Cite as

Binomial coefficients not divisible by a prime

  • Alan H. Stein
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1383)

Keywords

London Math Product Representation Summation Formula Asymptotic Bound Preceding Lemma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Coquet. A summation formula related to the binary digits. Invent. Math. 73 (1983), 107–115.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    N.J. Fine. Binomial coefficients modulo a prime. Amer. Math. Monthly 54 (1947), 589–592.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J.W.L. Glaisher. On the residue of a binomial-theorem coefficient with respect to a prime modulus. Quart. J. Pure. App. Math. 30 (1899), 150–156.zbMATHGoogle Scholar
  4. [4]
    H. Harborth. Number of odd binomial coefficients. Proc. Amer. Math. Soc. 63 (1977), 19–22.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    M.D. McIlroy. The number of 1's in binary integers: bounds and extremal properties. SIAM J. Comput. 3 (1974) 255–261.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    David Singmaster. Notes on binomial coefficients I–A generalization of Lucas' congruence. J. London Math. Soc. 8 (1974), 545–548.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    David Singmaster. Notes on binomial coefficients II — The least n such that p e divides an r-nomial coefficient of rank n. J. London Math. Soc. 8 (1974), 549–554.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    David Singmaster, Notes on binomial coefficients III — Any integer divides almost all binomial coefficients. J. London Math. Soc. 8 (1974), 555–560.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A.H. Stein. Exponential sums related to binomial coefficient parity. Proc. Amer. Math. Soc. 80 (1980), 526–530.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A.H. Stein. Exponential sums of an iterate of the binary sum-of-digit function. Indiana Univ. Math. J. 31 (1982), 309–315.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    A.H. Stein. Exponential sums of sum-of-digit functions. Illinois J. Math. 30 (1986), 660–675.MathSciNetzbMATHGoogle Scholar
  12. [12]
    A.H. Stein. Exponential sums of digit counting functions. (to appear).Google Scholar
  13. [13]
    K. Stolarsky, Power and exponential sums related to binomial coefficient parity. SIAM J. Appl. Math. 32 (1977), 717–730.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Alan H. Stein
    • 1
  1. 1.The University of ConnecticutWaterbury

Personalised recommendations