Advertisement

Number Theory pp 146-169 | Cite as

Hybrid problems in number theory

  • A. Sárközy
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1383)

Keywords

Arithmetic Progression Residue Class Large Sieve Distinct Prime Factor Hybrid Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Balog and A. Sarkozy, On sums of integers having small prime factors, I, Studia Sci. Math. Hung. 19 (1984), 35–47.MathSciNetzbMATHGoogle Scholar
  2. [2]
    _____,, II, Studia Sci. Math. Hung. 19 (1984), 81–89.MathSciNetzbMATHGoogle Scholar
  3. [3]
    _____, On sums of sequences of integers, I, Acta Arithmetica 44 (1984), 73–86.MathSciNetzbMATHGoogle Scholar
  4. [4]
    _____,, II, Acta Math. Acad. Sci. Hung. 44 (1984), 169–179.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    _____,, III, Acta Math. Acad. Sci. Hung. 44 (1984), 339–349.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    F. Behrend, On sequences of numbers not divisible one by another, J. London Math. Soc. 10 (1935), 42–45.zbMATHGoogle Scholar
  7. [7]
    D. G. Cantor and B. Gordon, Sequences of integers with missing differences, J. Comb. Th. Ser. A 14 (1973), 281–287.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    P. Erdos and G. Freiman, On two additive problems, to appear.Google Scholar
  9. [9]
    P. Erdos and S. Hartman, On sequences of distances of a sequence, Colloq. Math. 17 (1967), 191–193.MathSciNetzbMATHGoogle Scholar
  10. [10]
    P. Erdos, H. Maier and A. Sarkozy, On the distribution of the number of prime factors of sums a+b, Transactions Amer. Math. Soc., to appear.Google Scholar
  11. [11]
    P. Erdos, M.B. Nathanson and A. Sarkozy, Sumsets containing infinite arithmetic progressions, J. Number Theory, to appear.Google Scholar
  12. [12]
    P. Erdos and D.J. Newman, Bases for sets of integers, J. Number Th. 9 (1977), 420–425.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    P. Erdos, C. Pomerance, A. Sarkozy and C.L. Stewart, On extreme values of arithmetic functions on sums, to appear.Google Scholar
  14. [14]
    P. Erdos and A. Sarkozy, On differences and sums of integers, I, J. Number Theory 10 (1978), 430–450.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    _____,, II, Bull. Soc. Math. Grece 18 (1977), 204–223.MathSciNetzbMATHGoogle Scholar
  16. [16]
    _____, On divisibility properties of integers of the form a+a′, Acta Math. Acad. Sci. Hung., to appear.Google Scholar
  17. [17]
    P. Erdos and P. Turan, On a problem in the elementary theory of numbers, Amer. Math. Monthly 41 (1934), 608–611.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions, J. Analyse Math. 31 (1977), 204–256.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    G. Halasz, Uber die Mittelwerte multiplikativer zahlentheoretischer Functionen, Acta Math. Acad. Sci. Hung. 19 (1968), 365–403.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    G. Halasz, On the distribution of additive and the mean values of multiplicative arithmetic functions, Studia Sci. Math. Hung. 6 (1971), 211–233.MathSciNetzbMATHGoogle Scholar
  21. [21]
    N.M. Haralambis, Sets of integers with missing differences, J. Comb. Th. Ser. A 23 (1977), 22–33.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    G. H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, 5th edition, Oxford University Press, 1979.Google Scholar
  23. [23]
    N. Hindman, Finite sums from sequences within cells of a partition of N, J. Comb. Th. Ser. A 17 (1974), 1–11.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    B. Hornfeck, Ein Satz uber die Primzahlmenge, Math. Z. 60 (1954), 271–273.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    B. Hornfeck, Berichtigung zur Arbeit: Ein Satz uber die Primzahlmenge, Math. Z. 62 (1955), 502.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    H. Iwaniec and A. Sarkozy, On a multiplicative hybrid problem, J. Number Theory, to appear.Google Scholar
  27. [27]
    T. Kamae and M. Mendes France, Van der Corput's difference theorem, Israel J. Math. 31 (1978), 335–342.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Khintchin, Zur additiven Zahlentheorie, Mat. Sb. N.S. 39 (1932), 27–34.Google Scholar
  29. [29]
    J.C. Lagarias, A. M. Odlyzko and J.B. Shearer, On the density of Sequences of integers the sum of no two of which is a square, I, J. Combinatorial Theory 33 (1982), 167–185.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    _____,, II, J. Combinatorial Theory 34 (1983), 123–139.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    H. L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Mathematics, 227, Springer-Verlag, 1971.Google Scholar
  32. [32]
    H. L. Montgomery and R.C. Vaughan, Exponential sums with multiplicative coefficients, Invent. Math. 43 (1977), 69–82.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    M. B. Nathanson and A. Sarkozy, Sumsets containing long arithmetic progressions, 2-powers and square-free integers, to appear.Google Scholar
  34. [34]
    H. Ostmann, Additive Zahlentheorie, Springer-Verlag, 1956.Google Scholar
  35. [35]
    C. Pomerance and A. Sarkozy, On homogeneous multiplicative hybrid problems in number theory, Acta Arithmetica, to appear.Google Scholar
  36. [36]
    C. Pomerance and A. Sarkozy, On products of sequences of integers, to appear.Google Scholar
  37. [37]
    C. Pomerance, A. Sarkozy and C.L. Stewart, On divisors of sums of integers, III, Pacific Journal, to appear.Google Scholar
  38. [38]
    D. Rotenberg, Sur une classe de parties evitables, Colloq. Math. 20 (1969), 67–68.MathSciNetzbMATHGoogle Scholar
  39. [39]
    K. F. Roth, Sur quelques ensembles d'entriers, C.R. Acad. Sci. Paris 234 (1952), 388–390.MathSciNetzbMATHGoogle Scholar
  40. [40]
    K. F. Roth, On certain sets of integers, J. London Math. Soc. 28 (1953), 104–109.MathSciNetCrossRefzbMATHGoogle Scholar
  41. [41]
    I. Z. Ruzsa, On difference-sequences, Acta Arith. 25 (1973/74), 151–157.MathSciNetzbMATHGoogle Scholar
  42. [42]
    I. Z. Ruzsa, On difference sets, Studici Sci. Math. Hungar. 13 (1978), 319–326.MathSciNetzbMATHGoogle Scholar
  43. [43]
    I.Z. Ruzsa, Uniform distribution, positive trigonometric polynomials and difference sets, Seminar on Number Theory, 1981–82, Exp. No. 18, 78 pp., Univ. Bordeaux Talence, 1982.Google Scholar
  44. [44]
    I.Z. Ruzsa, On measures on intersectivity, Acta Math. Hungar. 43 (1984), 335–340.MathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    I.Z. Ruzsa, Difference sets without squares, Period. Math. Hungar. 15 (1984), 205–209.MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    I.Z. Ruzsa, On an additive property of squares and primes, to appear.Google Scholar
  47. [47]
    A. Sarkozy, On difference sets of sequences of integers, I, Acta Math. Acad. Sci. Hung. 31 (1978), 125–149.MathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    _____,, II, Annales Univ. Sci. Budapest, Eotros 21 (1978), 45–53.MathSciNetzbMATHGoogle Scholar
  49. [49]
    _____,, III, Acta Math. Acad. Sci. Hung. 31 (1978), 355–386.MathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    _____, On the distribution of residues of products of integers, Acta Math. Acad. Sci. Hung., to appear.Google Scholar
  51. [51]
    _____, On the number of prime factors of integers of the form ai+bj, Studia Sci. Math. Hung., to appear.Google Scholar
  52. [52]
    A. Sarkozy and C.L. Stewart, On divisors of sums of integers, I, Acta Math. Acad. Sci. Hung. 48 (1986), 147–154.MathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    _____,, II, J. Reine Angew. Math. 365 (1986), 171–191.MathSciNetzbMATHGoogle Scholar
  54. [54]
    _____, IV, Canadian J., to appear.Google Scholar
  55. [55]
    _____, On sums of the form σp min(y, ‖pα‖−1), J. Australian Math. Soc., to appear.Google Scholar
  56. [56]
    A. Sarkozy and E. Szemeredi, On the sequence of squares (in Hungarian), Mat. Lapok 16 (1965), 76–85.MathSciNetzbMATHGoogle Scholar
  57. [57]
    C. L. Stewart, On difference sets of sets of integers, Seminaire Delange-Pisot-Poitou (Theorie des numbres). 19 (5) (1977–78), 8 p.Google Scholar
  58. [58]
    C. L. Stewart and R. Tijdeman, On infinite difference sets, Canadian J. Math. 31 (1979), 897–910.MathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    R. Tijdeman, Distance sets of sequences of integers, Proceedings, Bicentennial Congress Wiskundig Genootschap (Vrije Univ., Amsterdam, 1978), Part II, pp. 405–415, Math. Centre Tracts, 101, Math. Centrum, Amsterdam, 1979.Google Scholar
  60. [60]
    R. C. Vaughan, The Hardy-Littlewood Method, Cambridge, 1981.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. Sárközy
    • 1
    • 2
  1. 1.Department of MathematicsBaruch College, The City University of New YorkUSA
  2. 2.Mathematical Institute of the Hungarian Academy of SciencesHungary

Personalised recommendations