Advertisement

Report on transcendency in the theory of function fields

  • David Goss
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1383)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [An1]
    Anderson, G.: “t-Motives”, Duke Math. J., Vol. 53, No. 2, (June 1986) 457–502.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [Ap1]
    Apéry, R: “Interpolation de fractions continues and irrationalité de certaines constantes”, Mathematics. 37–53, CTHS: Bull. Sec. Sci., III, Bid. Nat., Paris 1981.Google Scholar
  3. [G1]
    Goss, D.: “von-Staudt for F q[T]”, Duke Math. J., Vol. 45, (December 1978), 885–910.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [G2]
    Goss, D.: “Analogies Between Global Fields”, Conference Proceedings Canadian Mathematical Society, Vol. 7 (1987), 83–114.MathSciNetzbMATHGoogle Scholar
  5. [G3]
    Goss, D.: “The Arithmetic of Function Fields 2: The ‘Cyclotomic’ Theory”, Journal of Algebra, Vol. 81, No. 1, (March 1983), 107–149.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [G4]
    Goss, D.: “The γ-function in the Arithmetic of Function Fields”, Duke Journal, Vol. 56, No. 1, (1988), 163–191.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [G5]
    Goss, D.: “Fourier Series, Measures, and Divided Power Series in the Theory of Function Fields”, (preprint).Google Scholar
  8. [L1]
    Lang, S.: “Algebraic Number Theory, Addison-Wesley, (1970).Google Scholar
  9. [S1]
    Siegel, C. L.: “Über die analytische Theorie der quadratischen Formen III”, Ann. of Math., 38, 1937, 212–291.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [W1]
    Wade, L. I.: “Certain quantities transcendential over GF(p n, x)”, Duke Math. J., 8, 701–729 (1941).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • David Goss

There are no affiliations available

Personalised recommendations