Implicit differential equations which are not solvable for the highest derivative

  • Tomasz Kaczynski
Research Articles
Part of the Lecture Notes in Mathematics book series (LNM, volume 1475)


Differential Inclusion Continuous Selection Fixed Point Index Homogeneous Dirichlet Problem Implicit Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bielawski, R., Górniewicz, L.: A fixed point index approach to some differential equations. To appear in Proc. of Conf. on Fixed Point Theory, ed. A. Dold, Lecture Notes in Math., Springer Verlag, Berlin-Heidelberg-New YorkGoogle Scholar
  2. 2.
    Bressan, A., Colombo, G. (1988): Extensions and selections of maps with decomposable values. Studia Mathematica 90, 69–86MathSciNetzbMATHGoogle Scholar
  3. 3.
    Dugundji, J., Granas, A. (1982): Fixed Point Theory. Vol. I, PWN, WarszawazbMATHGoogle Scholar
  4. 4.
    Engelking, E. (1979): Dimension Theory. PWN, WarszawazbMATHGoogle Scholar
  5. 5.
    Erbe, L.H., Krawcewicz, W.: Nonlinear boundary value problems for differential inclusion y″ ε F(t,y,y′). To appear in Annales Polonici Mat.Google Scholar
  6. 6.
    Erbe, L.H., Krawcewicz, W., Kaczynski, T.: Solvability of two-point boundary value problems for systems of nonlinear differential equations of the form y″=g(t,y,y′,y″). To appear in Rocky Mt. J. of Math.Google Scholar
  7. 7.
    Frigon, M. (1983): Applications de la transversalité topologique à des problèmes nonlinéaires pour certaines classes d'équations différentielles ordinaires. To appear in Dissentationes MathematicaeGoogle Scholar
  8. 8.
    Fryszkowski, A. (1983): Continuous selections for a class of non-convex multivalued maps. Studia Mathematica 76, 163–174MathSciNetzbMATHGoogle Scholar
  9. 9.
    Granas, A., Guennoun, Z. (1988): Quelques rélques résultats dans la théorie de Bernstein-Carathéodory de l'équation y″=f(t,y,y′). C.R. Acad. Sci. Paris, Série I, L 306, 703–706MathSciNetzbMATHGoogle Scholar
  10. 10.
    Ornelas, A.: Approximation of relaxed solutions for lower semicontinuous differential inclusions. SISSA, preprintGoogle Scholar
  11. 11.
    Petryshyn, W.V. (1986): Solvability of various boundary value problems for the equation x″=f(t,x,x′x″)−y. Pacific J. of Math., 122, No. 1, 169–195MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Tomasz Kaczynski

There are no affiliations available

Personalised recommendations