Asymptotic behaviors of solutions of a system of linear ordinary differential equations as t→∞

  • William A. HarrisJr.
  • Yasutaka Sibuya
Research Articles
Part of the Lecture Notes in Mathematics book series (LNM, volume 1475)


Asymptotic Behavior Differential System Nonlinear Ordinary Differential Equation Distinct Eigenvalue Unknown Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harris, Jr., H.A., Lutz, D.A. (1977): A unified theory of asymptotic integration. J. Math. Anal. Appl. 57, 571–586MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Levinson, N. (1948): The asymptotic nature of solutions of linear differential equations. Duke Math J. 15, 111–126MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Sibuya, Y. (1958): Nonlinear ordinary differential equations with periodic coefficients. Funk. Ekva. 1, 77–132MathSciNetGoogle Scholar
  4. 4.
    Sibuya, Y. (1954): Sur un système d'équations différentielles ordinaires linéaires à coefficents périodiques et cotenants des paramètres. Jour. Fac. Sci., Univ. Tokyo, I, 7, 229–241MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • William A. HarrisJr.
  • Yasutaka Sibuya

There are no affiliations available

Personalised recommendations