Jumping nonlinearity for 2nd order ODE with positive forcing

  • P. Habets
  • M. Ramos
  • L. Sanchez
Research Articles
Part of the Lecture Notes in Mathematics book series (LNM, volume 1475)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguinaldo, L., Schmitt, K. (1978): On the boundary value problem u″+u=αu +p(t), u(0)=0=u(π). Proc. AMS 68, 64–68MathSciNetzbMATHGoogle Scholar
  2. 2.
    De Figueiredo, D. (1982): Positive solutions of semilinear elliptic problems. Lect. Notes 957, Springer Verlag, Berlin-Heidelberg-New York, 34–87Google Scholar
  3. 3.
    Habets, P., Metzen, G., (1989): Existence of periodic solutions of Duffing equations. J. Diff Eq. 78, 1–32MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hart, D.C., Lazer, A.C., McKenna, P.J. (1986): Multiplicity of solutions of nonlinear boundary value problems. SIAM J. Math. Anal. 17, 1332–1338MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lazer, A.C., McKenna, P.J. (1987): Large scale oscillatory behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincaré 4, 243–274MathSciNetzbMATHGoogle Scholar
  6. 6.
    Lazer, A.C., McKenna, P.J. (1989): Existence, uniqueness and stability of oscillations in differential equations with asymmetric nonlinearities. Trans. AMS 315, 721–739MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • P. Habets
  • M. Ramos
  • L. Sanchez

There are no affiliations available

Personalised recommendations