The mountain circle theorem

  • G. Fournier
  • M. Willem
Research Articles
Part of the Lecture Notes in Mathematics book series (LNM, volume 1475)


Banach Space Closed Subset Critical Point Theory Relative Category Finsler Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ambrosetti, A., Rabinowitz, P.H. (1973): Dual variational methods in critical point theory and applications. J. Funct. Anal 14, 349–381MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Chang, K.-C. (1985): Infinite Dimensional Morse Theory and its Applications. S.M.S. les presses de l'Université de MontréalGoogle Scholar
  3. 3.
    Chang, K.-C., Long, Y., Zender, E.: Forced oscillations for the Triple Pendulum. preprintGoogle Scholar
  4. 4.
    Clark, D.C. (1972): A variant of the Lusternik-Schnirelman Theory. Indiana J. Math. 22, 65–74MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Fadell, E. (1986): Cohomological methods in non-free G-spaces with applications to general Borsuk-Ulam theorems and critical point theorems for invariant functionals. Nonlinear Functional Analysis and its Applications, S.P. Singh (ed.) D. Reidel Publishing Company, 1–45Google Scholar
  6. 6.
    Fournier, G., Willem, M. (1989): Multiple solutions of the forced double pendulum equation. Analyse Non Linéaire, Contribution in l'honneur de J.-J. Moreau, eds. H. Attouch, J.-P. Aubin, F. Clarke, I. Ekeland, CRM Gauthier-Villars, Paris, 259–281Google Scholar
  7. 7.
    Fournier, G., Willem, M.: Relative Category and the Calculus of Variations, preprintGoogle Scholar
  8. 8.
    Fournier, G., Willem, M. (1989): Simple variational methods for unbounded potentials. In Topological Fixed Point Theory and Applications, Boju Jiang Ed., Springer-Verlag, Berlin-Heidelberg-New York, 75–82CrossRefGoogle Scholar
  9. 9.
    Mawhin, J., Willem, M. (1984): Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differential Equations 52, 264–287MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ni, W.N. (1980): Some minimax principles and their applications in nonlinear elliptic equations. Journal d'Analyse Mathématiques 37, 248–275MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Palais, R. (1966): The Lusternik-Schnirelman theory on Banach manifolds. Topology 5, 115–132MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Palais, R. (1970): Critical point theory and the minimax principle. Global Analysis, Proc. Symp. Pure Math. 15 S.S. Chern (ed.), A.M.S., Providence, 185–202CrossRefGoogle Scholar
  13. 13.
    Szulkin, A.: A relative category and applications to critical point theory for strongly indefinite functionals. Reports (1989–1) Dep of Math, U. of Stockholm, SwedenGoogle Scholar
  14. 14.
    Tian, G. (1984): On the mountain pass theorem. Kexue Tongbao 29, 1150–1154zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • G. Fournier
  • M. Willem

There are no affiliations available

Personalised recommendations