Advertisement

Semigroups and renewal equations on dual Banach spaces with applications to population dynamics

  • Odo Diekmann
  • Mats Gyllenberg
  • Horst R. Thieme
Research Articles
Part of the Lecture Notes in Mathematics book series (LNM, volume 1475)

Keywords

Bounded Linear Operator Continuous Semigroup Abstract Cauchy Problem Renewal Equation Integrate Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Arendt (1987): Vector-valued Laplace transforms and Cauchy problems. Israel J. Math. 59, 327–352MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ph. Clément, O. Diekmann, M. Gyllenberg, H.J.A.M. Heijmans and H.R. Thieme (1987): Perturbation theory for dual semigroups. I. The sun-reflexive case. Math. Ann. 277, 709–725MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ph. Clément, O. Diekmann, M. Gyllenberg, H.J.A.M. Heijmans and H.R. Thieme (1988): Perturbation theory for dual semigroups. II. Time-dependent perturbations in the sun-reflexive case. Proc. Roy. Soc. Edinburgh 109A, 145–172MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ph. Clément, O. Diekmann, M. Gyllenberg, H.J.A.M. Heijmans and H.R. Thieme (1989): Perturbation theory for dual semigroups. III. Nonlinear Lipschitz continuous perturbations in the sun-reflexive case. In Volterra integrodifferential equations in Banach spaces and applications, G. Da Prato and M. Iannelli (Eds.), Pitman Research Notes in Mathematics Series 190, Longman, Harlow, 67–89Google Scholar
  5. 5.
    Ph. Clément, O. Diekmann, M. Gyllenberg, H.J.A.M. Heijmans and H.R. Thieme (1989): Perturbation theory for dual semigroups. IV. The intertwining formula and the canonical pairing. In Semigroup theory and applications, Ph. Clément, S. Invernizzi, E. Mitidieri and I.I. Vrabie (Eds.), Lecture Notes in Pure and Applied Mathematics 116, p.95–116, Marcel Dekker, New YorkGoogle Scholar
  6. 6.
    Ph. Clément, O. Diekmann, M. Gyllenberg, H.J.A.M. Heijmans and H.R. Thieme (1989): A Hille-Yosida type theorem for a class of weakly* continuous semigroups. semigroup Forum 38, 157–178MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    O. Diekmann (1987): On the mathematical synthesis of physiological and behavioural mechanisms and population dynamics. In: Mathematical topics in population biology, morphogenesis and neurosciences, E. Teramoto and M. Yamaguli (Eds.), Springer Lecture Notes in Biomath. 71, 48–52Google Scholar
  8. 8.
    O. Diekmann, M. Gyllenberg, and H.R. Thieme: Perturbation theory of dual semigroups. V. Variation of constants formulas. submittedGoogle Scholar
  9. 9.
    G. Gripenberg, S-O. Londen, O. Staffans (1990): Volterra Integral and Functional Equations, Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  10. 10.
    H. Kellermann and M. Hieber (1989): Integrated semigroups, J. Funct. Anal. 84, 160–180MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    F. Neubrander (1988): Integrated semigroups and their applications to the abstract Cauchy problem. Pac. J. Math. 135, 111–155MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    H.R. Thieme (1988): Well-posedness of physiologically structured population models for Daphnia magna. How biological concepts can benefit by abstract mathematical analysis. J. Math. Biol. 26, 299–317MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    H.R. Thieme (1990): 'Integrated semigroups’ and integrated solutions to abstract Cauchy problems. J. Math. Anal. Appl. 152, 416–447MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Odo Diekmann
  • Mats Gyllenberg
  • Horst R. Thieme

There are no affiliations available

Personalised recommendations