Advertisement

Systems of set-valued equations in Banach spaces

  • G. Conti
  • P. Nistri
  • P. Zecca
Research Articles
Part of the Lecture Notes in Mathematics book series (LNM, volume 1475)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, J.P., Cellina, A. (1984): Differential Inclusions. Springer Verlag, Berlin-Heidelberg-New YorkCrossRefzbMATHGoogle Scholar
  2. 2.
    Cellina, A. (1969): A theorem on the approximation of compact multivalued mappings. Rend. Acc. Naz. dei Lincei, 47, 429–433MathSciNetzbMATHGoogle Scholar
  3. 3.
    Cellina, A., Lasota, A. (1969): A new approach to the definition of topological degree for multivalued mappings. Rend. Acc. Naz. Lincei, 47, 434–440MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chukwu, E.N., Gronski, J.M. (1977): Approximate and complete controllability of nonlinear systems to a convex target set. J. Math. Anal. and Appl. 61, 97–112MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Darbo, G., (1958): Teoria dell' omologia in una categoria di mappe plurivalenti ponderate. Rend. Sem. Mat. Univ. Padova, 28, 188–224MathSciNetzbMATHGoogle Scholar
  6. 6.
    Dugundji, J. (1951): An extension of Tietze's Theorem. Pac. J. Math., 1, 353–367MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gorniewicz, L. (1986): On the solution sets of differential inclusions. J.Math. Anal. and Appl., 113, 235–244MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Lasry, J.M., Robert, R. (1976): Analyse Non Lineaire Multivoque. Cahiers De Mathem. de la Decision, 7611, Ceremade, Universite de Paris-DauphineGoogle Scholar
  9. 9.
    Macki, J.W., Nistri, P., Zecca, P. (1988): Periodic solutions of a control problem via marginal maps. Annali di Mat. Pura e Appl., 63, 383–396MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Martelli, M. (1975): A Rothe's type theorem for non-compact acyclic-valued maps. Boll. Un. Mat. Ital., 11, Suppl. Facs. 3, 70–76MathSciNetzbMATHGoogle Scholar
  11. 11.
    Massabó, I., Nistri, P., Pejsachowicz, J., (1980): On the solvability of nonlinear equations in Banach spaces. In Fixed Point Theorems, E. Fadell and G. Fournier Eds., Lecture Notes in Math. 886, 270–289, Springer Verlag, Berlin-Heidelberg-New YorkCrossRefGoogle Scholar
  12. 12.
    Nistri, P., (1983): Periodic control problems for a class of nonlinear differential systems. Nonlinear Anal. T.M.A., 7, 79–80MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Powers, M.J. (1972): Lefschetz fixed point theorems for a new class of multivalued maps. Pac. J. of Math., 42, 211–220MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • G. Conti
  • P. Nistri
  • P. Zecca

There are no affiliations available

Personalised recommendations