Advertisement

Dynamics and delays

  • Jack K. Hale
Survey Articles
Part of the Lecture Notes in Mathematics book series (LNM, volume 1475)

Keywords

Periodic Solution Periodic Orbit Hopf Bifurcation Imaginary Axis Global Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    an der Heiden, U. (1979): Periodic solutions of second order differential equations with delay. J. Math. Anal. Appl. 70, 599–609MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bélair, J., Mackey, M.C. (1989): Consumer memory and price fluctuations in commodity markets: an integrodifferential model. J. Dyn. Diff. Equations 1, 299–325MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Busenberg, S., Travis, C.C. (1982): On the use of reducible functional differential equations. J. Math. Anal. Appl. 89, 46–66MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Busenberg, S., Hill, T. (1988): Construction of differential equation approximations to delay differential equations. Appl. Anal. 31, 35–56MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cao, Y. (1989): The discrete Lyapunov function for scalar differential delay equations. J. Differential Equations. To appearGoogle Scholar
  6. 6.
    Chow, S.-N., Diekmann, O., Mallet-Paret, J. (1985): Multiplicity of symmetric periodic solutions of a nonlinear Volterra integral equation. Japan J. Appl. Math. 2, 433–469MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chow, S.-N., Hale, J.K. (1982): Methods of Bifurcation Theory. Springer-VerlagGoogle Scholar
  8. 8.
    Chow, S.-N., Lin, X.-L., Mallet-Paret, J. (1989): Transition layers for singularly perturbed delay differential equations with monotone nonlinearities. J. Dynamics Diff. Eqns. 1, 3–43MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chow, S.-N., Mallet-Paret, J. (1983): Singularly perturbed delay differential equations. In Coupled Oscillators (Eds. J. Chandra and A. Scott), North-Holland, 7–12Google Scholar
  10. 10.
    de Oliveira, J.C., Hale, J.K. (1980): Dynamic behavior from the bifurcation function. Tôhoku Math. J. 32, 577–592CrossRefzbMATHGoogle Scholar
  11. 11.
    Hale, J.K. (1979): Nonlinear oscillations in equations with delays. Lect. Appl. Math. 17, 157–185. Am. Math. Soc.MathSciNetGoogle Scholar
  12. 12.
    Hale, J.K. (1985): Flows on centre manifolds for scalar functional differential equations. Proc. Royal Soc. Edinburgh 101A, 193–201MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hale, J.K. (1986): Local flows for functional differential equations. Contemporary Mathematics 56, 185–192. Am. Math. Soc.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Huang, W. (1990): Global geometry of the stable regions for two delay differential equations. To appearGoogle Scholar
  15. 15.
    Ivanov, A.F., Sharkovsky, A.N. (1990): Oscillations in singularly perturbed delay equations. Dynamics Reported. To appearGoogle Scholar
  16. 16.
    Lenhart, S.N., Travis, C.C. (1985): Stability of functional partial differential equations. J. Differential Equations 58, 212–227MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Longtin, A. (1988): Nonlinear oscillations, noise and chaos in neural delayed feedback. Ph. D. Thesis, McGill University, MontrealGoogle Scholar
  18. 18.
    Mallet-Paret, J. (1988): Morse decomposition for delay differential equations. J. Differential Equations. 72, 270–315MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Mallet-Paret, J., Nussbaum, R. (1986): Global continuation and asymptotic behavior for periodic solutions of a delay differential equation. Ann. Math. Pura Appl. 145, 33–128MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nussbaum, R. (1973): Periodic solutions of analytic functional differential equations are analytic. Mich. Math. J. 20, 249–255MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Vallée, R., Dubois, P., Côté, M., Delisle, C. (1987): Second-order differential delay equation to describe a hybrid bistable device. Phys. Rev. A 36, 1327–1332CrossRefGoogle Scholar
  22. 22.
    Vallée, R., Marriott, C. (1989): Analysis of an N th-order nonlinear differential delay equation. Phys. Rev. A 39, 197–205MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhao, Y., Wang, H., Huo, Y. (1988): Anomalous behavior of bifurcation in a system with delayed feedback. Phys. Letters A 133, 353–356MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Jack K. Hale

There are no affiliations available

Personalised recommendations