On groups having finite monadic church-rosser presentations

  • Klaus Madlener
  • Friedrich Otto
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1320)


Finite Group Free Product Abelian Subgroup Finite Index Finite Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.V. Anisimov; Group languages; Cybernetics 7 (1971), 594–601.MathSciNetCrossRefGoogle Scholar
  2. 2.
    J. Avenhaus, R.V. Book, C. Squier; On expressing commutativity by finite Church-Rosser presentations: a note on commutative monoids; RAIRO Inf. Théorique 18 (1984), 47–52.MathSciNetzbMATHGoogle Scholar
  3. 3.
    J. Avenhaus, K. Madlener; On groups defined by monadic Thue systems; Coll. Math. Soc. János Bolyai: Algebra, Combinatorics and Logic in Computer Science 42 (1983), 63–71.MathSciNetzbMATHGoogle Scholar
  4. 4.
    J. Avenhaus, K. Madlener, F. Otto; Groups presented by finite two-monadic Church-Rosser Thue systems; Trans. Amer. Math. Soc., to appear.Google Scholar
  5. 5.
    R.V. Book; Confluent and other types of Thue systems; J. Assoc. Comput. Mach. 29 (1982), 171–182.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    R.V. Book; Thue systems as rewriting systems; in J.P. Jouannaud (ed.), Rewriting Techniques and Applications, Lect. Notes Comput. Sci. 202 (1985), 63–94.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    R.V. Book, M. Jantzen, C. Wrathall; Monadic Thue systems; Theoret. Comput. Sci. 19 (1982), 231–251.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Y. Cochet; Church-Rosser congruences on free semigroups; Coll. Math. Soc. János Bolyai: Algebraic Theory of Semigroups 20 (1976), 51–60.MathSciNetzbMATHGoogle Scholar
  9. 9.
    V. Diekert; Some remarks on Church-Rosser Thue presentations; in Proc. of STACS 87, Passau, Lect. Notes Comp. Sci. 247 (1987), 272–285.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M.J. Dunwoody; The accessibility of finitely presented groups; Inventiones Mathematicae 81 (1985), 449–457.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    R.H. Gilman; Computations with rational subsets of confluent groups; Proceedings of EUROSAM 84, Lect. Notes Comput. Sci. 174 (1984), 207–212.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    M. Greendlinger; Problem of conjugacy and coincidence with the anticenter in group theory; Siberian Math. J. 7 (1966), 626–640.MathSciNetCrossRefGoogle Scholar
  13. 13.
    R.H. Haring-Smith; Groups and simple languages; Trans. Amer. Math. Soc. 279 (1983), 337–356.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    M. Jantzen; Thue systems and the Church-Rosser property; Proceedings of MFCS 84, Lect. Notes Comput. Sci. 176 (1984), 80–95.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    D. Kapur, P. Narendran; The Knuth-Bendix completion procedure and Thue systems; SIAM J. Comput. 14 (1985), 1052–1072.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    K. Madlener, F. Otto; Commutativity in groups presented by finite Church-Rosser Thue systems; RAIRO Inf. Theorique, to appear.Google Scholar
  17. 17.
    W. Magnus, A. Karrass, D. Solitar; Combinatorial Group Theory; 2nd. rev. ed., Dover Publ., New York, 1976.zbMATHGoogle Scholar
  18. 18.
    D.E. Muller, P.E. Schupp; Groups, the theory of ends, and context-free languages; J. Comput. System Sci. 26 (1983), 295–310.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    C. O'Dunlaing; Infinite regular Thue systems; Theoret. Comput. Sci. 25 (1983), 171–192.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    F. Otto; Elements of finite order for finite monadic Church-Rosser Thue systems; Trans. Amer. Math. Soc. 291 (1985), 629–637.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    F. Otto; On deciding whether a monoid is a free monoid or is a group; Acta Inf. 23 (1986), 99–110.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Klaus Madlener
  • Friedrich Otto

There are no affiliations available

Personalised recommendations