Free right h-Adequate semigroups

  • John Fountain
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1320)


Right adequate semigroups can be regarded as semigroups with a unary operation. Taking this view, we give a description of the free objects in a class of right adequate semigroups. By making use of the normal form representation of the elements we derive a number of properties enjoyed by these free objects.


Normal Form Inverse Semigroup Free Product Regular Semigroup Principal Ideal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Batbedat, 'Les demi-groups idunaires ou gamma-demi-groups' Cahiers Mathématiques 20, Montpellier, 1981.Google Scholar
  2. 2.
    A.H. Clifford, 'The free completely regular semigroup on a set', J. Algebra 59 (1979), 434–451.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A.H. Clifford and G.B. Preston, The algebraic theory of semigroups. Math. Surveys of the Amer. Math. Soc., 7 (Providence, R.I., 1961 (vol.1) and 1967 (vol.2)).Google Scholar
  4. 4.
    P.M. Cohn, Universal algebra. Harper and Row (New York, 1965).zbMATHGoogle Scholar
  5. 5.
    A. El-Qallali, Structure theory for abundant and related semigroups (D.Phil. Thesis, University of York, 1980).Google Scholar
  6. 6.
    T. Evans, 'Finitely presented loops, lattices, et cetera are hopfian', J. London Math. Soc. 44 (1969), 551–552.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J.B. Fountain, 'A class of right PP monoids', Quart. J. Math. Oxford (2) 28 (1977), 285–300.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    J.B. Fountain, 'Adequate semigroups', Proc. Edinburgh Math. Soc. 22 (1979), 113–125.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J.B. Fountain, 'Abundant semigroups', Proc. London Math. Soc. 44 (1982), 103–129.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    G. Grätzer, Universal algebra. Van Nostrand (Princeton, N.J., 1968).zbMATHGoogle Scholar
  11. 11.
    A. Horn and N. Kimura 'The category of semilattices', Algebra Universalis 1 (1971), 26–38.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    E. Hotzel, 'On semigroups with maximal conditions', Semigroup Forum, 11 (1975/76), 337–362MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J.M. Howie, An introduction to semigroup theory. Academic Press (London 1976).zbMATHGoogle Scholar
  14. 14.
    G. Lallement, Semigroups and combinatorial applications. Wiley (New York 1979).zbMATHGoogle Scholar
  15. 15.
    A.I. Mal'cev, Algebraic systems, Springer-Verlag (Berlin, 1973).CrossRefGoogle Scholar
  16. 16.
    D. B. McAlister, 'One-to-one partial right translations of a right cancellative semigroup', J. Algebra 43 (1976), 231–251.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    W.D. Munn, 'Free inverse semigroups', Proc. London Math. Soc. 29 (1974),385–404.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    F. Pastijn, 'A representation of a semigroup by a semigroup of matrices over a group with zero'. Semigroup Forum 10 (1975), 238–249.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    N.R. Reilly, 'Free generators in free inverse semigroups', Bull. Austral. Math. Soc. 7 (1972), 407–424.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    N.R. Reilly, 'Free inverse semigroups', Algebraic Theory of Semigroups (G. Pollak, editor, Colloquia Mathematica Societatis Janos Bolyai, 20 North-Holland, 1979, pp.247–275).Google Scholar
  21. 21.
    H.E. Scheiblich, 'Free inverse semigroups', Proc. Amer. Math. Soc. 38 (1973),1–7.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    B.M. Schein, 'Free inverse semigroups are not finitely presentable'. Acta Math. Acad. Sci. Hungar. 26 (1975), 41–52.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • John Fountain

There are no affiliations available

Personalised recommendations