On pseudovarieties of monoids

  • Jorge Almeida
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1320)


Generalize Variety Homomorphic Image Commutative Semigroup Main Lemma Finite Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Almeida, Power pseudovarieties of semigroups I, Semigroup Forum 33 (1986) 357–373.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C. Ash, Pseudovarieties, generalized varieties and similary described classes, J. Algebra 92 (1985) 104–115.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    S. Eilenberg, Automata, Languages and Machines, Vol. B, Academic Press, New York, 1986.Google Scholar
  4. 4.
    G. Lallement, Semigroups and Combinatorial Applications, Wiley-Interscience, New York, 1979.zbMATHGoogle Scholar
  5. 5.
    J.E. Pin, Semigroupe des parties et relations de Green, Can. J. Math. 36 (1984) 327–343.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J.E. Pin, H. Straubing and D. Thérien, Small varieties of finite semigroups and extensions, J. Austral. Math. Soc. (Series A) 37 (1984) 269–281.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J. Reiterman, The Birkhoff theorem for finite algebras, Algebra Universalis 14 (1982) 1–10.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H. Straubing, The variety generated by finite nilpotent monoids, Semigroup Forum 24 (1982) 25–38.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Jorge Almeida

There are no affiliations available

Personalised recommendations