New Integrals pp 167-179 | Cite as

Some properties of dyadic primitives

  • V. A. Skvortsov
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1419)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.A. Skvortsov, Differentiation with respect to nets and Haar series, Mat. Zametki, 4(1968), 33–44.MathSciNetzbMATHGoogle Scholar
  2. 2.
    V.A. Skvortsov, Haar series with convergent subsequences of partial sums, Dokl. Akad. Nauk SSSR, 183(1968), 784–786; Engl. transl., Sov. Math. Dokl. 9(1968), 1969–1971.MathSciNetzbMATHGoogle Scholar
  3. 3.
    V.A. Skvortsov, A generalisation of Perron's integral, Vest. Mosk. Univ. Ser.I, 24(1969), 48–51.zbMATHGoogle Scholar
  4. 4.
    A. Pacquement, Détermination d'une fonction au moyen de sa dérivée sur un réseau binaire, C.R.Acad.Sci.Paris 284,A(1977), 365–368.MathSciNetzbMATHGoogle Scholar
  5. 5.
    B.S. Thomson, Derivation bases on the real line, I, II, Real Analysis Exchange 8(1982/83), 67–207, 278–442.MathSciNetzbMATHGoogle Scholar
  6. 6.
    K.M.Ostaszewski, Henstock integration in the plane, Memoirs of AMS 67(1986), N353.Google Scholar
  7. 7.
    S.Saks, Theory of the integral, 2nd English edition, Warsaw 1937.Google Scholar
  8. 8.
    A. Khintchine, Sur une extension de l'intégrale de M. Denjoy, C. R. Acad. Sci. Paris, 162(1916), 287–291.zbMATHGoogle Scholar
  9. 9.
    V.A. Skvortsov, Calculation of the coefficients of an everwhere convergent Haar series, Mat. Sb., 117(1968), 349–360; Engl. transl., Math. USSS Sb., 4(1968), 317–327.zbMATHGoogle Scholar
  10. 10.
    V.A. Skvortsov, Constructive definition of HD-integral, Moscow Un. Math. Bull. 37(1982) N6, 46–50.zbMATHGoogle Scholar
  11. 11.
    J.-P. Kahane, Une theorie de Denjoy des martingales dyadiques, Prepublication, Paris, 1988.zbMATHGoogle Scholar
  12. 12.
    A.M.Bruckner, Differentiation of real functions, Lecture Notes in Math., v659, 1978.Google Scholar
  13. 13.
    A.M. Bruckner and Cliff Cordy, Near intersection conditions for path derivative, Real Anal. Exchange 13(1987–88) N1, 16–23.Google Scholar
  14. 14.
    V.A. Skvortsov, Generalised integrals in the theory of trigonometric, Haar and Walsh series, Real Anal. Exchange, 12(1986–87) N1, 59–62.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • V. A. Skvortsov
    • 1
  1. 1.Moscow State UniversityMoscow

Personalised recommendations