New Integrals pp 150-166 | Cite as

Divergence theorem for vector fields with singularities

  • Washek F. Pfeffer
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1419)


Vector Field Additive Function Finite Union Dyadic Cube Czechoslovak Math 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B.
    A.S. Besicovitch, On sufficient conditions for a function to be analytic, and behaviour of analytic functions in a neighbourhood of non-isolated singular points, Proc. London Math. Soc., 22(1931), 1–9.MathSciNetCrossRefGoogle Scholar
  2. Fa.
    K.J. Falconer, The geometry of fractal sets, Cambridge Univ. Press, Cambridge 1985.CrossRefzbMATHGoogle Scholar
  3. Fe.
    H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969.zbMATHGoogle Scholar
  4. G.
    E. Giusti, Minimal surfaces and functions of bounded variation, Birkhauser, Basel, 1984.CrossRefzbMATHGoogle Scholar
  5. Ha.
    P.R. Halmos, Measure theory, Van Nostrand, New York, 1950.CrossRefzbMATHGoogle Scholar
  6. He.
    R. Henstock, Lectures on the theory of integration, World Scientific, Singapore, 1988.CrossRefzbMATHGoogle Scholar
  7. JK1.
    J. Jarnik and J. Kurzweil, A nonabsolutely convergent integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J., 35(1985), 116–139.MathSciNetzbMATHGoogle Scholar
  8. JK2.
    J. Jarnik and J. Kurzweil, A new and more powerful concept of the PU-integral, Czechoslovak Math. J., 38(1988), 8–48.MathSciNetzbMATHGoogle Scholar
  9. M.
    J. Mařik, The surface integral, Czechoslovak Math. J., 6(1956), 522–558.MathSciNetzbMATHGoogle Scholar
  10. MM.
    J. Mařik and J, Matyska, On a generalization of the Lebesgue integral in E m, Czechoslovak Math. J., 15(1965), 261–269.MathSciNetCrossRefzbMATHGoogle Scholar
  11. P1.
    W.F. Pfeffer, The multidimensional fundamental theorem of calculus. J. Australian Math. Soc., 43(1987), 143–170.MathSciNetCrossRefzbMATHGoogle Scholar
  12. P2.
    W.F. Pfeffer, Stokes theorem for forms with singularities, C. R. Acad. Sci. Paris, Sér. I, 306(1988), 589–592.MathSciNetzbMATHGoogle Scholar
  13. PY.
    W.F. Pfeffer and Wei-Chi Yang, A multidimensional variational integral and its extensions, Proceedings of Twelfth Summer Symposium in Real Analysis August 9–12 1988.Google Scholar
  14. Ro.
    C.A. Rogers, Hausdorff measures, Cambridge Univ. Press, Cambridge, 1970.zbMATHGoogle Scholar
  15. Ru.
    W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1987.zbMATHGoogle Scholar
  16. Sa.
    S. Saks, Theory of the integral, Dover, New York, 1964.zbMATHGoogle Scholar
  17. Sh.
    V.L. Shapiro, The divergence theorem for discontinuous vector fields, Ann. Math., 68(1958), 604–624.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Washek F. Pfeffer
    • 1
  1. 1.University of CaliforniaDavisUSA

Personalised recommendations