Advertisement

Generalized convergence theorems for Denjoy-Perron integrals

  • Lee Peng Yee
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1419)

Keywords

Convergence Theorem Bounded Variation Continuous Linear Partial Division Uniform Convergence Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Alexiewicz, Linear functionals on Denjoy integrable functions, Coll. Math. 1 (1948) 289–293.MathSciNetzbMATHGoogle Scholar
  2. 2.
    V. G. Chelidze and A. G. Djvarsheishvili, Theory of the Denjoy integral and some of its applications (Russian), Tbilisi 1978.Google Scholar
  3. 3.
    T. S. Chew, Nonlinear Henstock-Kurzweil integrals and representation theorems, SEA Bull. Math. 12 (1988) 97–108.MathSciNetzbMATHGoogle Scholar
  4. 4.
    A. G. Djvarsheishvili, On a sequence of integrals in the sense of Denjoy (Russian), Akad. Nauk Gruzin. SSR Trudy Mat. Inst. Rajmadze 18 (1951) 221–236.MathSciNetGoogle Scholar
  5. 5.
    R. Gordon, Equivalence of the generalized Riemann and restricted Denjoy integrals, Real Analysis Exchange 12 (1986–87) 551–574.MathSciNetzbMATHGoogle Scholar
  6. 6.
    R. Henstock, Linear Analysis, London 1967.Google Scholar
  7. 7.
    R. Henstock, Lectures on the theory of integration, Singapore 1988.Google Scholar
  8. 8.
    Y. Kubota, A direct proof that the RC-integral is equivalent to the D*-integral, Proc. Amer. Math. Soc. 80 (1980) 293–296.MathSciNetzbMATHGoogle Scholar
  9. 9.
    P. Y. Lee, Lanzhou Lectures on Henstock integration, World Scientific 1989.Google Scholar
  10. 10.
    P. Y. Lee and T. S. Chew, A better convergance theorem for Henstock integrals, Bull. London Math. Soc. 17 (1985) 557–564.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    P. Y. Lee and T. S. Chew, On convergence theorems for the nonabsolute integrals, Bull. Austral. Math. Soc. 34 (1986) 133–140.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    P. Y. Lee and T. S. Chew, A short proof of the controlled convergence theorem for Henstock integrals, Bull. London Math. Soc. 19 (1987) 60–62.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    P. Y. Lee and Wittaya Naak-In, A direct proof that Henstock and Denjoy integrals are equivalent, Bull. Malaysian Math. Soc. (2) 5 (1982) 43–47.MathSciNetzbMATHGoogle Scholar
  14. 14.
    K. C. Liao, A refinement of the controlled convergence theorem for Henstock integrals, SEA Bull. Math. 11 (1987) 49–51.MathSciNetzbMATHGoogle Scholar
  15. 15.
    G. Q. Liu, The measurability of δ(ζ) in Henstock integration, Real Analysis Exchange, 13 (1987/88) 446–450.MathSciNetGoogle Scholar
  16. 16.
    P. Muldowney, A general theory of integration in function spaces, Longman 1987.Google Scholar
  17. 17.
    F. Riesz and B. Sz.-Nagy, Functional Analysis (French), Budapest 1955.Google Scholar
  18. 18.
    S. Saks, Theory of the integral, 2nd ed., Warsaw 1937.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Lee Peng Yee
    • 1
  1. 1.National University of SingaporeSingapore

Personalised recommendations