Integration in infinite-dimensional spaces

  • Ralph Henstock
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1419)


Three exact new proofs are given of vital results. The division space integral over infinite-dimensional product spaces can be defined using a bare minimum of conditions (Theorem 1). For certain absolute and non-absolute conditions of integrability, a real functional is constant almost everywhere if cylindrical of every finite order (Theorem 2). If the integration is absolute, the integral's value is in a sense the limit almost everywhere of the integrals over some sequences of finite-dimensional sets (Theorem 4).

This paper was written during the term of a two-year Leverhulme Trust Emeritus Fellowship award for the study of integration theory.


Finite Order Finite Union Division Space Riemann Integration Partial Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Chandrasekhar, ‘Stochastic problems in physics and astronomy', Reviews of Modern Physics 15 (1943) 1–89, Math. Rev. 4–248.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    A. Einstein, ‘Zur Theorie der Brownschen Bewegung', Ann. d. Physik 19 (1906) 371–381.CrossRefzbMATHGoogle Scholar
  3. 3.
    R. P. Feynman, ‘Space-time approach to non-relativistic quantum mechanics', Reviews of Modern Physics 20(1948) 367–387, Math. Rev. 10–224.MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. Henstock, Linear Analysis (Butterworths, London, 1968), Math. Rev. 54 #7725.Google Scholar
  5. 5.
    R. Henstock, ‘Generalized integrals of vector-valued functions', Proc. London Math. Soc. (3) 19(1969) 509–536, Math. Rev. 40 #4420.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    R. Henstock, ‘Integration in product spaces, including Wiener and Feynman integration', Proc. London Math. Soc. (3) 27 (1973) 317–344, Math. Rev. 49 #9145.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    R. Henstock, ‘Additivity and the Lebesgue limit theorems', the Greek Mathematical Society C. Carathéodory Symposium Sept. 3–7, 1973, pp. 223–241 (published 1974), Math. Rev. 57 #6355.Google Scholar
  8. 8.
    R. Henstock, ‘Integration, variation and differentiation in division spaces', Proc. Royal Irish Academy, Series A, 78 (1978) No.10, 69–85, Math. Rev. 80d:26011.MathSciNetzbMATHGoogle Scholar
  9. 9.
    R. Henstock, ‘Generalized Riemann integration and an intrinsic topology', Canadian Journal of Mathematics 32(1980) 395–413, Math. Rev. 82b:26010.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    R. Henstock, ‘Division spaces, vector-valued functions and backwards martingales', Proc. Royal Irish Academy, series A, 80(1980) No. 2, 217–232, Math. Rev. 82i:60091.MathSciNetzbMATHGoogle Scholar
  11. 11.
    R. Henstock, ‘Density integration and Walsh functions', Bull. Malaysian Math. Soc. (2)5(1982) 1–19, Math. Rev. 84i:26010.MathSciNetzbMATHGoogle Scholar
  12. 12.
    R. Henstock Lectures on the Theory of Integration (World Scientific, Singapore, 1988).CrossRefzbMATHGoogle Scholar
  13. 13.
    B. Jessen, ‘The theory of integration in a space of an infinite number of dimensions', Acta Math. 63(1934) 249–323, Zblt. 10.200MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    P. Muldowney, A general theory of integration in function spaces (Longman, Pitman Research Notes in Math. 153, 1987).Google Scholar
  15. 15.
    M Smoluchowski, Ann. d. Physik 48 (1915) 1103.Google Scholar
  16. 16.
    N. Wiener, ‘Differential space', J. Math. Phys. 2(1923) 132–174.CrossRefGoogle Scholar
  17. 17.
    N. Wiener, ‘Generalized harmonic analysis', Acta Math. 55 (1930) 117–258.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Ralph Henstock
    • 1
  1. 1.University of UlsterColeraineIreland

Personalised recommendations