New and old results concerning Henstock's integrals

  • Susana Fernandez Long de Foglio
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1419)


Pitman Research Note Hypercomplex Number Schwartz Distribution Lebesque Measure Riemann Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    DARTS, R.B. and McSHANE, E., The deterministic Itô-belated integral is equivalent to the Lebesgue integral, Proc. of the Amer. Math. Soc., vol. 72, number 2, (1978).Google Scholar
  2. [2]
    DENJOY, A., Sur l'integration riemanienne, Comptes Rendus 169, 219–221 (1919).zbMATHGoogle Scholar
  3. [3]
    DENJOY, A., Sur la definition riemanienne de l'integral de Lebesgue, Comptes Rendues 193, (1931), 695–698.zbMATHGoogle Scholar
  4. [4]
    COLOMBEAU, J.F., Elementary introduction to new generalized functions, North-Holland Math. Studies, 113 (1985).Google Scholar
  5. [5]
    FOGLIO, S., A integral determinística Itô-belated segundo uma velha definitiva de Beppo Levi, Atas do 5°. Simpósio Nacional de Probabilidade e Estatística, (1982), (Brazil).Google Scholar
  6. [6]
    FOGLIO, S., The N-variational integral and the Schwartz distributions, Proc. London Math. Soc., 18, (1968), 337–348.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [7]
    FOGLIO, S., The N-variational integral and the Schwartz distributions II, J. London Math. Soc. (2), (1970), 14–18.Google Scholar
  8. [8]
    FOGLIO, S. and HENSTOCK, R., The N-variational integral and the Schwartz distributions III, J. London Math. Soc. (2), (1973), 693–700.Google Scholar
  9. [9]
    HALKIN, H., On the uniform limit of multiple balayage of vector integrals, Amer. Math. Monthly, vol. 73, pp. 733–735, (1966).MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    HENSTOCK, R., Theory of integration, Butterworth, London, (1963).zbMATHGoogle Scholar
  11. [11]
    HENSTOCK, R., The equivalence of generalized forms of the Ward, Variational, Denjoy-Stieltjes, and Perron-Stieltjes integrals, Proc. London Math. Soc. (3), 10, (1960).Google Scholar
  12. [12]
    KEMPISTY, S., Sur l'integrale (A) de M. Denjoy, Compt. Rend., 185, (1927), 749–751.zbMATHGoogle Scholar
  13. [13]
    KURZWEIL, J., Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math., J., 7 (82), 1957, 568–583.MathSciNetzbMATHGoogle Scholar
  14. [14]
    LEVI, B., Sulla definizione dell'integrale, Annali di matematica, Serie IV, T.I., 1924.Google Scholar
  15. [15]
    LEVI, B., Sulla definizione della integrale, Scritti Matematica, Oferti a Luiggi Berzolari, Pascua, 1936.Google Scholar
  16. [16]
    LEVI, B., Teoria de la integral de Lebesgue, independiente de la noción de media, Publicationes del Inst. de la Univ. del Litoral (Argentina), (1941).Google Scholar
  17. [17]
    McSHANE, E.J., Stochastic calculus and Stochastic models, Acad. Press, 1974.Google Scholar
  18. [18]
    MULDOWNEY, P., A general theory of integration in function spaces, Longman Scient. Tech. Pitman Research Notes in Math. Series, (1987).Google Scholar
  19. [19]
    PESIN, J.N., Classical and Modern Integration theories, Acad. Press, 1970.Google Scholar
  20. [20]
    TODOROV, T.D., Sequential approach to Colombeau's theory of generalized functions, Miramare, Trieste, (1987).Google Scholar
  21. [21]
    TODOROV, T.D., Colombeau's generalized functions and non-standard analysis, Miramare, Trieste, (1987).zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Susana Fernandez Long de Foglio
    • 1
  1. 1.Departmento de EstatísticaUniversidade Federal de de São CarlosSão Carlos, SPBrazil

Personalised recommendations