Some applications of a theorem of Marcinkiewicz

  • P. S. Bullen
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1419)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Bauer. Der Perronsche Integralbegriff und seine Beziehung zum Lebesgueschen, Monatsh. Math. Phys., 26(1915), 153–198.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 1.
    A. Bruckner. Differentiation of Real Functions, Lecture Notes in Math., #659 Berlin-Heidelberg-New York, 1978.Google Scholar
  3. 1.
    P.S. Bullen. The Burkill approximately continuous integral, J. Austral. Math. Soc., (Ser. A)35 (1983), 236–253.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 2.
    . The Burkill approximately continuous integral II, Math. Chron., 12(1983), 93–98.MathSciNetzbMATHGoogle Scholar
  5. 1.
    P.S. Bullen and R. Vyborny. Some applications of a theorem of Marcinkiewicz, to appear, Canad. Math. Bull.Google Scholar
  6. 1.
    J.C. Burkill. The approximately continuous Perron integral, Math. Z., 34 (1931), 270–278.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 1.
    V.G. Celidze and A.G. Dzvarseisvili. Teoriya Integrala Denjoy i Nekotorye eë Prilozeniya, Tbilis. Gos. Univ., Tbilis, 1978. Engl. transl. to appear.Google Scholar
  8. 1.
    Chew, T.-S. On the generalized dominated convergence theorem, Bull. Austral. Math. Soc., 37(1980), 165–171.MathSciNetzbMATHGoogle Scholar
  9. 1.
    E.A. Coddington. Theory of Ordinary Differential Equations, New York, 1955.Google Scholar
  10. 1.
    A. Denjoy. Leçons sur le Calcul de Coefficients d'une Série Trigonométrique, Vol. IV.2, Paris, 1949.Google Scholar
  11. 1.
    R. Henstock. Theory of Integration, London, 1963.Google Scholar
  12. 1.
    Y. Kubota. A characterization of the approximately continuous Denjoy integral, Canad. J. Math., 22(1970), 219–226.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 1.
    J. Kurzweil. Nichtabsolut Konvergente Integrale, Leipzig, 1980.Google Scholar
  14. 1.
    Lee P.-Y. and Chew T.-S. On convergence theorems for non-absolute integrals, Bull. Austral. Math. Soc., 34(1986), 133–140.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 1.
    Lee P.-Y. and Lu S. Notes on Classical Integration Theory (VIII), Res. Rep. #324, Dept. Math., National Univ. Singapore, 1988.Google Scholar
  16. 1.
    E.W. McShane. On Perron integration, Bull. Amer. Math. Soc., 48(1942), 718–726.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 1.
    I.P. Natanson. Theory of Functions of a Real Variable, Vol. I, Engl. transl. (2nd ed. rev.), New York, 1961.Google Scholar
  18. 1.
    O. Perron. Über den Integralbegriff, Sitzber. Heidleberg Akad. Wiss. Abt. A, 16(1914), 1–16.zbMATHGoogle Scholar
  19. 1.
    J. Ridder. Über approximativ stetiger Denjoy-Integrale, Fund. Math., 21 (1933), 1–10.zbMATHGoogle Scholar
  20. 2.
    . Ueber Definitionen von Perron-Integralen I, II, Indag. Math., 9(1947), 227–235, 280–289.zbMATHGoogle Scholar
  21. 1.
    S.Saks. Theory of the Integral, 2nd ed. rev., New York, 1937.Google Scholar
  22. 1.
    D.N. Sarkhel. A criterion for Perron integrability, Proc. Amer. Math. Soc., 7(1978), 109–112.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 1.
    A.W. Schurle. A function is Perron integrable if it has locally small Riemann sums, J. Austral. Math. Soc., (Ser. A)36(1986), 220–232.MathSciNetzbMATHGoogle Scholar
  24. 1.
    V.A. Skvorcov. Some properties of CP-integrals, Amer. Math. Soc. Transl., (2)54(1966), 231–254.CrossRefGoogle Scholar
  25. 1.
    G. Tolstov. Sur l'intégrale de Perron, Math. Sb., 5(1939), 647–660.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • P. S. Bullen
    • 1
  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations