Advertisement

Introduction to the new integrals

  • Ralph Henstock
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1419)

Keywords

Fractional Order London Math Trigonometric Series Convergence Factor Fixed Norm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Burkill, Functions of intervals, Proc. London Math Soc. (2) 22 (1924) 275–310.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    J.C. Burkill, The Cesàro-Perron integral, Proc. London Math. Soc. (2) 34 (1932) 314–322, Zbt.5.392.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    J.C. Burkill, The Cesàro-Perron scale of integration, Proc. London Math. Soc. (2) 39 (1935) 541–552, Zbt.12.204.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    J.C. Burkill, Fractional orders of integrability, Journal London Math. Soc. 11 (1936) 220–226, Zbt.14.258.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J.C. Burkill, Integrals and trigonometric series, Proc. London Math. Soc. (3) 1 (1951) 46–57, MR13, 126.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    J.G. Darboux, Mémoire sur les fonctions discontinues, Ann. Sci. Ec. Norm. Sup. (2) 4 (1875) 57–112.MathSciNetGoogle Scholar
  7. 7.
    A. Denjoy, Une extension de l'intégrale de M.Lebesgue, C.R.Acad. Sci. Paris 154 (1912) 859–862.zbMATHGoogle Scholar
  8. 8.
    R. Henstock, The efficiency of convergence factors for functions of a continuous real variable, Journal London Math. Soc. 30 (1955) 273–286, MR17, 359.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    R. Henstock, The use of convergence factors in Ward integration, Proc. London Math. Soc. (3) 10 (1960) 107–121, MR22#12197.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    R. Henstock, The equivalence of generalized forms of the Ward, variational, Denjoy-Stieltjes and Perron-Stieltjes integrals, Proc. London Math. Soc. (3) 10 (1960) 281–303, MR22#12198.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    R. Henstock, Definitions of Riemann type of the variational integrals, Proc. London Math. Soc. 11 (1961) 402–418, MR24#A1994.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. Journal 7 (82) (1957) 418–446 (especially 422–428), MR22#2735.MathSciNetzbMATHGoogle Scholar
  13. 13.
    H. Lebesgue, Intégrale, languer, aire, Annali Mat. Pura Appl. (3) 7 (1902) 231–359, J.buch 33, 307.CrossRefzbMATHGoogle Scholar
  14. 14.
    N. Lusin, Sur les propriétés de l'intégrale de M.Denjoy, C.R.Acad. Sci. Paris 155 (1912) 1475–1478.zbMATHGoogle Scholar
  15. 15.
    J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and summability of trigonometrical series, Fundamenta Math. 26 (1936) 1–43, Zbt.14.111.zbMATHGoogle Scholar
  16. 16.
    E.J. McShane, A unified theory of integration, American Math. Monthly 80 (1973) 349–359, MR47#6981.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    O. Perron, Ueber den Integralbegriff, S.-B. Heidelberg Akad. Wiss., Abt.A16 (1914) 1–16.zbMATHGoogle Scholar
  18. 18.
    G.F.B. Riemann, Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe, Abh. Gesell. Wiss. Göttingen 13 (1868) Math. Kl. 87–132, Oeuvres mathématiques de Riemann, 1898, Paris, reprinted 1968, Paris and Cleveland.Google Scholar
  19. 19.
    T.J.Stieltjes, Recherches sur les fractions continues, Annales de la Faculté des Sci. de Toulouse 8 (1894).Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Ralph Henstock
    • 1
  1. 1.Department of MathematicsUniversity of Ulster Coleraine Co. LondonderryIreland

Personalised recommendations