Equivariant morse theory for isolated critical orbits and its applications to nonlinear problems

  • Wang Zhi-qiang
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1306)


Normal Bundle Critical Group Morse Index Morse Theory Critical Orbit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Au 1]
    T.Aubin, Nonlinear analysis on manifold. Monge-Ampère equations. Springer-Verlag, (1982).Google Scholar
  2. [Bo 1]
    R. Bott, Nondegenerate critical manifold, Ann. of Math. 60, (1954) 248–261.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [Bo 2]
    R. Bott, lectures on Morse theory, old and new, Bull. Am. Math. Soc. 7(1982) 331–358.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [Br 1]
    G. Bredon, Introduction to compact transformation group, Academic press, New York (1972).zbMATHGoogle Scholar
  5. [Ch 1]
    K.C.Chang, Infinite dimensional Morse theory and its applications, Montreal (1983).Google Scholar
  6. [CH 1]
    R.Courant & D.Hilbert, Methods of mathematical physics, Vol.I (1953).Google Scholar
  7. [CWL 1]
    K.C. Chang, S.P. Wu & S.J. Li, Multiple periodic solutions for an asymptotically linear wave equation, Indiana Math. J.31 (1982) 721–729.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [GM 1]
    D. Gromoll & W. Meyer, On differentiable functions with isolated critical points, Topology 8(1969) 361–369.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Gr 1]
    M.J. Greenberg, Lectures on algebraic topology, W.A.Benjamin, INC. New York (1967).zbMATHGoogle Scholar
  10. [HK 1]
    P.Hess & T.Kato, On some linear and nonlinear eigenvalue problems with an indefinite weight function, Comm. in P.D.E. 5(10), 999–1030.Google Scholar
  11. [Hu 1]
    D.Husemoller, Fibre bundles, Springer-Verlag, (1966).Google Scholar
  12. [Ke 1]
    J.L.Kelly, General topology. Van Nostrand, (1955).Google Scholar
  13. [Mi 1]
    J.Milnor, Morse theory, Ann. Math. Stud. No.51 (1963).Google Scholar
  14. [Pac 1]
    P.Pacella. Morse theory for flows in presence of a symmetry group, MRC Technical Summary Report No.2530.Google Scholar
  15. [Pal 1]
    P.S. Palais, Morse theory on Hilbert manifolds, Topology, 2(1963), 299–340.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [Ra 1]
    P.H. Rabinowitz, A bifurcation theorem for potential operators, J.Funct. Analy. 25(1977) 412–424.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [Ro 1]
    E.H. Rothe. Critical point theory in Hilbert space under general boundary conditions. J.Math. Anal. Appl. 36(1971), 377–431.MathSciNetCrossRefGoogle Scholar
  18. [Wan 1]
    Z.Q.Wang, A note on the deformation theorem, (to appear in Acta Math. Sinica. Vol 29(1986) No.5).Google Scholar
  19. [Was 1]
    G. Wasserman, Equivariant differential topology, Topology Vol 8, 127–150, 1969.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Wang Zhi-qiang
    • 1
  1. 1.Institute of MathematicsAcademia SinicaBeijingChina

Personalised recommendations